K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2018

\(x^3+2018x^2-2018x+2019\)

\(=\left(x^3+2019x^2\right)-\left(x^2+2019x\right)+\left(x+2019\right)\)

\(=x^2\left(x+2019\right)-x\left(x+2019\right)+\left(x+2019\right)\)

\(=\left(x+2019\right)\left(x^2-x+1\right)\)

Tham khảo nhé~

17 tháng 7 2021

a) \(3x-1=\left(\sqrt{3x}\right)^2-1^2=\left(\sqrt{3x}-1\right)\left(\sqrt{3x}+1\right)\)

b) \(4x-25=\left(2\sqrt{x}\right)^2-5^2=\left(2\sqrt{x}-5\right)\left(2\sqrt{x}+5\right)\)

c) \(x-3\sqrt{x}-4\left(x\ge0\right)\Rightarrow x+\sqrt{x}-4\sqrt{x}-4\)

\(=\sqrt{x}\left(\sqrt{x}+1\right)-4\left(\sqrt{x}+1\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)\)

14 tháng 9 2023

a) \(x-4\sqrt{x-2}+2\left(x\ge2\right)\) 

\(=x-4\sqrt{x-2}-2+4\)

\(=\left(x-2\right)-4\sqrt{x-2}+4\)

\(=\left(\sqrt{x-2}\right)^2-2\cdot2\cdot\sqrt{x-2}+2^2\)

\(=\left(\sqrt{x-2}-2\right)^2\)

b) \(x+4\sqrt{x-2}+2\left(x\ge2\right)\)

\(=x+4\sqrt{x-2}+4-2\)

\(=\left(x-2\right)+4\sqrt{x-2}+4\)

\(=\left(\sqrt{x-2}\right)^2+2\cdot2\cdot\sqrt{x-2}+2^2\)

\(=\left(\sqrt{x-2}+2\right)^2\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Lời giải:
a.

$7-3a=(\sqrt{7}-\sqrt{3a})(\sqrt{7}+\sqrt{3a})$

b. 

$14x^2-11=(\sqrt{14}x-\sqrt{11})(\sqrt{14}x+\sqrt{11})$

c.

$3x-6\sqrt{x}-6=3(x-2\sqrt{x}-2)$
$=3[(\sqrt{x}-1)^2-3]$

$=3(\sqrt{x}-1-\sqrt{3})(\sqrt{x}-1+\sqrt{3})$

d.

$x\sqrt{x}-3\sqrt{x}-2=x\sqrt{x}-2x+2x-4\sqrt{x}+\sqrt{x}-2$
$=x(\sqrt{x}-2)+2\sqrt{x}(\sqrt{x}-2)+(\sqrt{x}-2)$

$=(\sqrt{x}-2)(x+2\sqrt{x}+1)$

$=(\sqrt{x}-2)(\sqrt{x}+1)^2$

13 tháng 8 2021

\(x^2-6=\left(x-\sqrt{6}\right)\left(x+\sqrt{6}\right)\)

\(x^2-6=\left(x-\sqrt{6}\right)\left(x+\sqrt{6}\right)\)

1 tháng 10 2019

\(DK:x\ge\frac{2019}{2020}\)

\(\Leftrightarrow\left(2020x-2019-2\sqrt{2020x-2019}+1\right)+\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{2020x-2019}-1\right)^2+\left(x-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2020x-2019}-1=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow x=1\left(n\right)\)

Vay nghiem cua PT la \(x=1\)