Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a .
a. =x3 -x2-4x2+4x+4x-4=(x-1)(x2-4x+4)=(x-1)(x-2)2
b. =x3+x2-6x2-6x+9x+9=(x+1)(x-3)2
c. =x3+x2+7x2+7x+10x+10=(x+1)(x+2)(X+5)
d. =x4+x3+x3+x2+x+1=x3(x+1)+x2(x+1)+x+1=(x+1)(x3+x2+x)=x(x+1)(x2+x+1).Ok
\(a,\)Mình làm theo kiểu lược đồ
Nhẩm nghiệm của đa thức trên ta đc : 2
Có lược đồ sau :(dòng trên ghi các hệ số)
1 | -2 | -6 | 12 | |
2 | 1 | 0 | -6 | 0 |
Ta phân tích đc thành :\(\left(x-2\right)\left(x^2-6\right)\)
\(c,x^2-5x+4\)
\(=x^2-4x-x+4\)
\(=x\left(x-4\right)-\left(x-4\right)\)
\(=\left(x-1\right)\left(x-4\right)\)
\(d,3x^2+5x+2\)
\(=3x^2+3x+2x+2\)
\(=3x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(3x+2\right)\)
\(e,x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+y^3\right)+3xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x^2-xy+y^2\right)+3xy-1\right]\)
\(x^3-2x^2-6x+12\)
\(=x^2.\left(x-2\right)-6\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-6\right)\)
\(x^4-7x^2+12\)
\(=\left[\left(x^2\right)^2-2.3,5x+3,5^2\right]-0,25\)
\(=\left(x^2-3,5\right)^2-0,5^2\)
\(=\left(x^2-3,5-0,5\right)\left(x^2-3,5+0,5\right)\)
\(=\left(x^2-4\right)\left(x^2-3\right)\)
Câu c tương tự câu b
Bạn nào cho mk 1 ik, mk cho bn ý 3 ik luôn. Mk hứa nếu nói dối bạn có thể Báo cáo sai phạm mk.
h) Ta có: \(\left\{{}\begin{matrix}\left|x-7\right|=\left|7-x\right|\ge7-x\\\left|x+5\right|\ge x+5\end{matrix}\right.\)
\(\Rightarrow\left|7-x\right|+\left|x+5\right|\ge\left(7-x\right)+\left(x+5\right)\)
\(\Rightarrow\left|x-7\right|+\left|x+5\right|\ge12\)
\(\Rightarrow H\ge12\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}7-x\ge0\\x+5\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le7\\x\ge-5\end{matrix}\right.\)
\(\Leftrightarrow-5\le x\le7\)
Vậy, MinH = 12 \(\Leftrightarrow-5\le x\le7\)
a) Ta có: \(A=2x^2-8x+10\)
\(=2\left(x^2-4x+5\right)\)
\(=2\left(x^2-4x+2^2+1\right)\)
\(2\left[\left(x-2\right)^2+1\right]\)
Ta lại có: \(\left(x-2\right)^2\ge0\)
\(\Rightarrow2\left[\left(x-2\right)^2+1\right]\ge2\)
\(\Rightarrow A\ge2\)
Dấu bằng xảy ra \(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy MinA = 2 \(\Leftrightarrow x=2\)
a) a^2 (x-y) +y-x
= a^2 (x-y) -(x-y)
= (x-y) (a^2 -1)
= (x-y)(a-1)(a+1)
b) m^2 -25y^2+10y -1
= m^2 -(25y^2 -10y +1)
= m^2-(5y-1)^2
=(m-5y+1)(m+5y-1)
c) a^2 -4x^2 +8x -4
= a^2 -(4x^2 -8x+4)
=a^2 -( 2x-2)^2
=(a-2x+2)(a+2x-2)