Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^2+2xy+y^2-x-y-12\)
= \(\left(x+y\right)^2-\left(x+y\right)-12\)
Đặt \(x+y=z\) (đặt ẩn phụ)
\(\Rightarrow z^2-z-12\)
\(=z^2+3z-4z-12\)
\(=z\left(z+3\right)-4\left(z+3\right)\)
\(=\left(z+3\right)\left(z-4\right)\)
Khi đó: \(\left(x+y+3\right)\left(x+y-4\right)\)
#HuyenAnh
Bài 1.
a) -2x( -3x + 2 ) - ( x + 2 )2
= 6x2 - 4x - ( x2 + 4x + 4 )
= 6x2 - 4x - x2 - 4x - 4
= 5x2 - 8x - 4
b) ( x + 2 )( x2 - 2x + 4 ) - 2( x + 1 )( 1 - x )
= x3 + 8 + 2( x + 1 )( x - 1 )
= x3 + 8 + 2( x2 - 1 )
= x3 + 8 + 2x2 - 2
= x3 + 2x2 + 6
c) ( 2x - 1 )2 - 2( 4x2 - 1 ) + ( 2x + 1 )2
= 4x2 - 4x + 1 - 8x2 + 2 + 4x2 + 4x + 1
= 4
d) x2 - 3x + xy - 3y
= x( x - 3 ) + y( x - 3 )
= ( x - 3 )( x + y )
Bài 2.
a) 4x2 - 4xy + y2 = ( 2x - y )2
b) 9x3 - 9x2y - 4x + 4y
= 9x2( x - y ) - 4( x - y )
= ( x - y )( 9x2 - 4 )
= ( x - y )( 3x - 2 )( 3x + 2 )
c) x3 + 2 + 3( x3 - 2 )
= x3 + 2 + 3x3 - 6
= 4x3 - 4
= 4( x3 - 1 )
= 4( x - 1 )( x2 + x + 1 )
Bài 3.
2( x - 2 ) = x2 - 4x + 4
⇔ ( x - 2 )2 - 2( x - 2 ) = 0
⇔ ( x - 2 )( x - 2 - 2 ) = 0
⇔ ( x - 2 )( x - 4 ) = 0
⇔ x = 2 hoặc x = 4
bn nhờ bn này giúp nek
bn ấy hc giỏi toán hơn mk
https://olm.vn/thanhvien/cuoidoi09081002
xl bn nha
mẫu mấy câu:
\(a,x^4y^4+4\)
\(=\left(x^2y^2+2\right)^2-4x^2y^2\)(cái này hok lâu sẽ tự hiêur)
\(=\left(x^2y^2-2xy+2\right)\left(x^2y^2+2xy+2\right)\)
\(1,x^2-xy-2x+2y\)
\(x\left(x-2\right)-y\left(x-2\right)\)
\(\left(x-2\right)\left(x-y\right)\)
\(2,x^2+4x+4-y^2\)
\(\left(x+2\right)^2-y^2\)
\(\left(x+2-y\right)\left(x+2+y\right)\)
\(3,x^2+x+y-y^2\)
\(\left(x-y\right)\left(x+y\right)+\left(x+y\right)\)
\(\left(x+y\right)\left(x-y+1\right)\)
\(4,x^3-x^2-4x+4\)
\(x^2\left(x-1\right)-4\left(x-1\right)\)
\(\left(x-1\right)\left(x^2-4\right)\)
\(\left(x-1\right)\left(x-2\right)\left(x+2\right)\)
\(x^4+x^3+x^2-1=x^3\left(x+1\right)+\left(x-1\right)\left(x+1\right)=\left(x+1\right)\left(x^3+x-1\right)\)
\(x^2y^2-x^2-y^2+1=\left(x^2y^2-x^2\right)-\left(y^2-1\right)=x^2\left(y^2-1\right)-\left(y^2-1\right)=\left(x^2-1\right)\left(y^2-1\right)=\left(x-1\right)\left(x+1\right)\left(y-1\right)\left(y+1\right)\)