\(2xy+3zy+6y+xz\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

Có 2xy + 3zy +6y + xz = 2xy + xz + 3zy + 6y = x(2y+z) + 3y(z+2y) =(2y+z)(x+3y)

23 tháng 7 2018

bạn ơi chổ\(3xy+6y\)

nếu rut ra sẽ là \(3y\left(x+1\right)\)

5 tháng 11 2017

ai jup mjk s

5 tháng 11 2017

bn xem lại đề xem hình như 3zy phải là 3z chứ 

1 tháng 11 2020

Bạn ơi sai đề ko vậy????

1 tháng 11 2020

ko bạn ơi thầy in đề vậy đó

19 tháng 10 2018

a)(a+b)^3+(a-b)^3

=(a+b+a-b)[(a+b)^2-(a+b)(a-b)+(a-b)^2]

=2a[a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2]

=2a(3b^2+a^2)

b)x^2-2x-15

=x^2+5x-3x-15

=x(x+5)-3(x+5)

=(x+5)(x-3)

c)bn viết sai đề z nè đề đúng là 2xy+3z+6y+xz

=(2xy+6y)+(xz+3z)

=2y(x+3)+z(x+3)

=(x+3)(2y+z)

d)x^3-5x^2+15x-17 hình như sai đề hay sao ý bn xem kĩ lại coi nhé

20 tháng 10 2018

Không có sai đề đâu bạn ơi

Trong đề cương của mình củng như vậy mà

30 tháng 9 2018

ghép 2 đầu 2 cuối nha pạn ...

~ hok tốt ~

2 tháng 10 2016

\(x^2-2xy+y^2-xz+yz\)

\(=\left(x-y\right)^2-z\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-z\right)\)

2 tháng 10 2016

\(x^2-2xy+y^2-xz+yz=\left(x^2-2xy+y^2\right)-\left(xz-yz\right)=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)

6 tháng 10 2017

a)xz-yz -x+2xy-y2=(xz-yz)-(x2-2xy+y2)=z(x-y)-(x-y)2=(x-y)(z-x+y)

b) x2+8x+15= (x2+3x)+(5x+15)=x(x+3)+5(x+3)=(x+3)(x+5)

c) x2-x-12=(x2-4x)+(3x-12)=x(x-4)+3(x-4)=(x-4)(x+3)

a) xz - yz - x2 + 2xy - y2

= (xz - yz) - (x2 - 2xy + y2)

= z (x - y) - (x - y)2

= z (x - y) - (x - y) (x - y)

= [z - (x - y)] (x - y)

= (z - x + y) (x - y)

b) x2 + 8x + 15

= x2 + 3x + 5x + 15

= (x2 + 3x) + (5x + 15)

= x (x + 3) + 5 (x + 3)

= (x + 5) (x + 3)

c) x2 - x - 12

= x2 - 4x + 3x - 12

= (x2 - 4x) + (3x - 12)

= x (x - 4) + 3 (x - 4)

= (x + 3) (x - 4)

#Học tốt!!!

~NTTH~

5 tháng 8 2019

c) \(x^2+y^2+xz+yz+2xy\)

\(=\left(x+y\right)^2+z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y+z\right)\)

5 tháng 8 2019

b) \(x^3+3x^2-3x-1\)

\(=\left(x^3-1\right)+3x\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+4x+1\right)\)

6 tháng 9 2020

a) \(\left(x+y\right)^3-x^3-y^3\)

\(=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-x^2+xy-y^2\right]\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)

\(=3xy\left(x+y\right)\)

b) \(x^2+y^2+2xy+yz+xz\)

\(=\left(x^2+2xy+y^2\right)+\left(yz+xz\right)\)

\(=\left(x+y\right)^2+z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y+z\right)\)

c) \(x^2-10xy-1+25y^2\)

\(=\left(x^2-10xy+25y^2\right)-1\)

\(=\left(x-5y\right)^2-1\)

\(=\left(x-5y-1\right)\left(x-5y+1\right)\)

d) \(ax^2-ax+bx^2-bx+a+b\)

\(=(ax^2+bx^2)-(ax+bx)+(a+b)\)

\(=x^2(a+b)-x(a+b)+(a+b)\)

\(=(a+b)(x^2-x+1)\)

e)\(x^2-2y+3xz+x-2y+3z\)

\(=(x^2+x)-(2xy+2y)+(3xz+3z)\)

\(=x(x+1)-2y(x-1)+3z(x+1)\)

\(=(x+1)(x-2y+3z)\)

f) \(xyz-xy-yz-xz+x+y+z-1\)

\(=(xyz-xy)-(yz-y)-(xz-x)+(z-1)\)

\(=xy(z-1)-y(z-1)-x(z-1)+(z-1)\)

\(=(z-1)(xy-y-x+1)\)

\(=(z-1)[y(x-1)-(x-1)]\)

\(=(z-1)(x-1)(y-1)\)

_Học tốt_

22 tháng 6 2017

Mai cho bn đấy tui dg định off =))

a)\(11x+11y-x^2-xy\)

\(=\left(11x+11y\right)-\left(x^2+xy\right)\)

\(=11\left(x+y\right)-x\left(x+y\right)\)

\(=\left(11-x\right)\left(x+y\right)\)

b)\(x^2-xy-8x+8y\)

\(=\left(x^2-xy\right)-\left(8x-8y\right)\)

\(=x\left(x-y\right)-8\left(x-y\right)\)

\(=\left(x-8\right)\left(x-y\right)\)

c)\(x^2-6x-y^2+9\)

\(=\left(x^2-6x+9\right)-y^2\)

\(=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)

d)\(x^2+2xy+y^2-xz-yz\)

\(=\left(x^2+2xy+y^2\right)-\left(xz+yz\right)\)

\(=\left(x+y\right)^2-z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y-z\right)\)

22 tháng 6 2017

a) \(11x+11y-x^2-xy\)

\(=11\left(x+y\right)-x\left(x+y\right)\)

\(=\left(x+y\right)\left(11-x\right)\)

b) \(x^2-xy-8x+8y\)

\(=x\left(x-y\right)-8\left(x-y\right)\)

\(=\left(x-y\right)\left(x-8\right)\)

c) \(x^2-6x-y^2+9\)

\(=\left(x^2-6x+9\right)-y^2\)

\(=\left(x-3\right)^2-y^2\)

\(=\left(x-3-y\right)\left(x-3+y\right)\)

d) \(x^2+2xy+y^2-xz-yz\)

\(=\left(x+y\right)^2-z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y-z\right)\)