Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, x2+3xy+2y2= x2+xy+2xy+2y2=x(x+y)+2y(x+y)=(x+2y)(x+y)
2, x(x+2)(x+3)(x+5)+9=x(x+5)(x+2)(x+3)+9=(x2+5x)(x2+5x+6)+9
Đặt x2+5x=t, ta có
t(t+6)+9=t2+6t+9=(t+3)2=(x2+5x+3)2=(x2+8)2
3, x2+2xy+y2+2x+2y-15=(x+y)2+2(x+y)-15=(x+y)2+2(x+y)+1-16=(x+y+1)2-42
= (x+y+1-4)(x+y+1+4)=(x+y-3)(x+y+5)
4, 4x4y4+1=4x4y4+4x2y2+1-4x2y2=(2x2y2+1)2-(2xy)2=(2x2y2+1-2xy)(2x2y2+1+2xy)
A.(x+2y).(x+2y-1) = x^2 +4xy + 4y^2 - x - 2y
B. (x-2y).(x+2y-1) = x^2 - x - 4y^2 + 2y
C. (x-2y).(x-2y+1) = x^2 - 4xy + 4y^2 + x - 2y
D.(x+2y).(x-2y) = x^2 - 4y^2
=>....
Bài 1:
a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)
\(=10-10x=10(1-x)\)
b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)
\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)
\(=-7x^2+7x=7x(1-x)\)
c)
\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)
\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)
\(=\left\{3-x-5[9x-2]\right\}(-2x)\)
\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)
Bài 2:
a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)
\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)
\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)
b)
\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)
\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)
\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)
\(2x^2+3(x^2-1)=5x(x+1)\)
Bài 1 :
a ) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)
b ) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)
c ) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4x\left(x-2y\right)-8y\left(x-2y\right)=4\left(x-2y\right)^2\)
d ) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(3x-2x^2+7\right)\)
e ) \(x^2-6xy+9y^2=\left(x-3x\right)^2\)
Bài 1 :
f ) \(x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)
g ) \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)
h ) \(125x^3+y^6=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)
\(x\left(x+2\right)\left(x+3\right)\left(x+5\right)+9\)
\(=\left(x^2+5x+6\right)\left(x^2+5x\right)+9\)
Đặt \(t=x^2+5x\)ta được;
\(t\left(t+6\right)+9=t^2+6t+9\)
\(=\left(t+3\right)^2=\left(x^2+5x+3\right)^2\)
b)\(x^2+2xy+y^2+2x+2y-15\)
\(=\left(x+y+1\right)^2-4^2\)
\(=\left(x+y+1+4\right)\left(x+y+1-4\right)\)
\(=\left(x+y-3\right)\left(x+y+5\right)\)
c)\(4x^4y^4+1=\left(2x^2y^2-2xy+1\right)\left(2x^2y^2+2xy+1\right)\)
a) \(-2x\left(10x-3\right)+5x\left(4x+1\right)=25\)
\(-20x^2+6x+20x^2+5x=25\)
\(\Rightarrow6x+5x=25\)
\(\Rightarrow11x=25\)
\(\Rightarrow x=\dfrac{25}{11}\)
b) \(y\left(5-2y\right)+2y\left(y-1\right)=15\)
\(5y-2y^2+2y^2-2y=15\)
\(\Rightarrow5y-2y=15\)
\(\Rightarrow3y=15\)
\(\Rightarrow y=5\)
c)\(x\left(x+1\right)-\left(x+1\right)=35\)
\(\Rightarrow\left(x-1\right)\left(x+1\right)=35\)
\(\Rightarrow x^2-1=35\)
\(\Rightarrow x^2=36\)
\(\Rightarrow x=6;x=-6\)
d)\(x\left(x^2+x+1\right)-x^2\left(x+1\right)=0\)
\(x^3+x^2+x-x^3+x=0\)
\(\Rightarrow x^2+2x=0\)
\(\Rightarrow x\left(x+2\right)=0\)
\(\Rightarrow x=0;x=0-2=-2\)
Vậy \(x=0;x=-2\)