Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ax2 - ax + bx2 -bx + a + b
= (ax2+ bx2 ) - (ax + bx) + (a + b)
=x2 (a + b) - x(a + b) + (a + b)
= (x2 - x + 1)(a + b)
ax2 - ax + bx2 - bx + a + b
= ( ax2 + bx2 ) - ( ax + bx ) + ( a + b )
= x2( a + b ) - x( a + b ) + ( a + b )
= ( a + b )( x2 - x + 1 )
\(\left(x+a\right)\left(x+b\right)\left(x+c\right)=\left(x^2+bx+ax+ab\right)\left(x+c\right)\)
\(=x^3+cx^2+bx^2+bcx+ax^2+acx+abx+abc\)
\(=x^3+\left(a+b+c\right)x^2+\left(ab+ac+bc\right)x+abc\)
Đồnh nhất đa thức trên với đa thức \(x^3+ax^2+bx+c\),ta đc hệ điều kiện:
\(\hept{\begin{cases}a+b+c=a\left(1\right)\\ab+ac+bc=b\left(2\right)\\abc=c\left(3\right)\end{cases}}\)
Từ \(\left(1\right)a+b+c=a=>b+c=0=>c=-b\)
Thay vào (2),ta đc: \(ab+a.\left(-b\right)+b.\left(-b\right)=b=>ab-ab-b^2=b=>-b^2=b\)
\(=>b^2+b=0=>b\left(b+1\right)=0=>\orbr{\begin{cases}b=0\\b=-1\end{cases}}\)
+b=0 thì từ (1) suy ra c=0 ; a tùy ý
+b=-1 thì từ (1) suy ra c=1
Mà theo (3)\(abc=c=>a=\frac{c}{bc}=\frac{1}{-1}=-1\)
Vậy a=-1 hoặc a tùy ý ;b=0 hoặc b=-1;c=0 hoặc c=1
a) ax - 2x - a2 + 2a
= ( ax - 2x ) - ( a2 - 2a )
= x ( a - 2 ) - a ( a - 2 )
= ( a - 2 ) ( x - a )
b) x2 + x - ax - a
= ( x2 + x ) - ( ax + a )
= x ( x + 1 ) - a ( x + 1 )
= ( x + 1 ) ( x - a )
Hok Tốt!!!
a) ax -2x- a2+ 2a
= (ax -2x ) -(a2 -2a )
= x(a-2) -a ( a-2 )
= (x-a) (a-2)
b) x2 +x -ax -a
=( x2 +x ) - ( ax +a )
= x( x+1 ) -a ( x+1 )
= ( x-a ) (x+ 1)
c) 2x2 +4ax +x +2a
=( 2x2 + 4ax ) + ( x+ 2a )
= 2x ( x+ 2a ) + ( x+2a )
= ( 2x +1 ) (x+2a )
d) 2xy -ax +x2 - 2ay
= (2xy -2ay ) + ( -ax + x2 )
= 2y( x-a ) + x ( x-a)
= ( 2y +x ) ( x -a )
\(axz^2-ax-ayz^2+ax+ay+az^3\)
= \(axz^2-ayz^2+ay+az^3\)
\(=a\left(xz^2-yz^2+y+z^3\right)\)
Bạn vẫn nên kiểm tra đề bài lại nhé
a) \(ax+ay-3x-3y=a\left(x+y\right)-3\left(x+y\right)=\left(a-3\right)\left(x+y\right)\)
b) \(x^3-3x^2+3x-9=x^2\left(x-3\right)+3\left(x-3\right)=\left(x-3\right)\left(x^2+3\right)\)
c) xem lại đề
d) \(9-x^2-2xy-y^2=9-\left(x+y\right)^2=\left(3-x-y\right)\left(3+x+y\right)\)
d) \(5x-5y+ax-ay=5\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(5+a\right)\)
bài 1
x(x+2)(x^2+2x+2)+1
=(x^2+2x)(x^2+2x+2)+1
đặt y=x^2+2x
=>y(y+2)+1
=y^2+2y+1
=y^2+y+y+1
=y(y+1)+(y+1)
=(y+1)(y+1)
=(x^2+2x+1)(x^2+2x+1)
=(x+1)^4
\(x^2+ax+b\)
\(=\left(x^2+\frac{2ax}{2}+\frac{a^2}{4}\right)+b-\frac{a^2}{4}\)
\(=\left(x+\frac{a}{2}\right)^2-\left(\frac{a^2}{4}-b\right)\)
Với điều kiện: \(\frac{a^2}{4}-b\ge0\)thì phân tích được
\(=\left(x+\frac{a}{2}+\sqrt{\frac{a^2}{4}-b}\right)\left(x+\frac{a}{2}-\sqrt{\frac{a^2}{4}-b}\right)\)