K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2016

\(x^4+x^3+2x^2+x+1\)

\(=\left(x^4+2x^2+1\right)+\left(x^3+x\right)\)

\(=\left(x^2+1\right)^2+x\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^2+1+x\right)\)

13 tháng 12 2016

x^4+x^3+2x^2+x+1

=(x^4+2x^2+1)+(x^3+x)

=(x^2+1)^2+x(x^2+1)

=(x^2+1)(x^2+x+1)

30 tháng 11 2018

\(b,x^2+4x+3=x^2+3x+x+3.\)

\(=x\left(x+3\right)+\left(x+3\right)=\left(x+1\right)\left(x+3\right)\)

\(c,16x-5x^2-3=x-5x^2+15x-3\)

\(=x\left(1-5x\right)+3\left(5x-1\right)\)

\(=\left(x+3\right)\left(1-5x\right)\)

\(d,x^4+4=x^4+4x^2+4-4x^2=\left(x+2\right)^2-4x^2\)

\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)

30 tháng 11 2018

\(e,x^3-2x^2+x-xy^2=x\left(x^2-2x+1-y^2\right).\)

\(=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-1+y\right)\left(x-1-y\right)\)

a, sửa đề : x2 + 7x - 8 

\(x^2+7x-8=x^2-x+8x-8\)

\(=x\left(x-1\right)+8\left(x-1\right)=\left(x-1\right)\left(x+8\right)\)

29 tháng 10 2014

a) Đây là tam thức bạc 2 

Để phân tích nó thành nhân tử được dễ dàng trước hết ta nhẩm nghiệm của nó

Nghiệm nhẩm là ước của hệ số tự do

Ở đây hệ số tự do là -2. Nhẩm ngay được 1 nghiệm của đa thức là 2. Vậy khi phân tích thành nhân tử đa thức chứa thừa số

x - 2.

Vậy bài này giải như sau:

2x2 -3x -2 = (2x2 -4x)  + ( x- 2) = 2x( x-2) + (x-2) = (x-2) (2x+1)

b) Đây là đa thức có tính gần đối xứng hoặc đối xứng

Vì vậy đề bài của bạn bị sai rồi

Tất cả đều có phương pháp chung một cách dễ dàng,

Mình không thể diễn giải đầy đủ cho bạn phương pháp ở đây vì quá dài.

Nếu muốn bạn có thể gọi điện cho mình, mình sẽ hướng dẫn chi tiết cho. Bạn hãy nhắn tin vào hộp thư của mình nhé. 

Mình nhắn lại  SĐT cho.

 

 

 

29 tháng 10 2014

a) 2x2-3x-2

=2x2_4x +x-2

=(2x2_ 4x)+(x-2)

=2x(x-2) +(x-2)

=(x-2) (2x+1)

 

4 tháng 1 2019

\(A=\left(x+1\right)\left(x-4\right)\left(x+2\right)\left(x-8\right)+4x^2\)

\(A=\left[\left(x+1\right)\left(x-8\right)\right]\left[\left(x-4\right)\left(x+2\right)\right]+4x^2\)

\(A=\left(x^2-7x-8\right)\left(x^2-2x-8\right)+4x^2\)

Đặt \(p=x^2-4,5x-8\)ta có :

\(A=\left(p-2,5x\right)\left(p+2,5x\right)+4x^2\)

\(A=p^2-\left(2,5x\right)^2+4x^2\)

\(A=p^2-6,25x^2+4x^2\)

\(A=p^2-2,25x^2\)

\(A=p^2-\left(1,5x\right)^2\)

\(A=\left(p-1,5x\right)\left(p+1,5x\right)\)

Thay \(p=x^2-4,5x-8\)vào A ta có :

\(A=\left(x^2-4,5x-8-1,5x\right)\left(x^2-4,5x-8+1,5x\right)\)

\(A=\left(x^2-6x-8\right)\left(x^2-3x-8\right)\)

4 tháng 1 2019

\(\left(x+1\right)\left(x-4\right)\left(x+2\right)\left(x-8\right)+4x^2\)

\(=\left(x+1\right)\left(x-8\right)\left(x-4\right)\left(x+2\right)+4x^2\)

\(=\left(x^2-7x-8\right)\left(x^2-2x-8\right)+4x^2\)

  Đặt \(x^2-2x-8=t\)

  Ta có : \(\left(t-5x\right)t+4x^2\)

\(=t^2-5xt+4x^2\)

\(=t^2-2.\frac{5}{2}xt+\frac{25}{4}x^2-\frac{9}{4}x^2\)

\(=\left(t-\frac{5}{2}\right)^2-\frac{9}{4}x^2\)

\(=\left(t-\frac{5}{2}-\frac{3}{2}x\right)\left(t-\frac{5}{2}+\frac{3}{2}x\right)\)

    Học tốt ~~

26 tháng 6 2018

2   \(x^7+x^5+1=x^7+x^6+x^5-x^6+1=x^5\left(x^2+x+1\right)-\left(x^6-1\right)=x^5\left(x^2+x+1\right)-\left(x^3-1\right)\left(x^3+1\right)\)

\(=x^5\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)=\left(x^2+x+1\right)\left(x^5-\left(x-1\right)\left(x^3+1\right)\right)\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)

1   \(x^3-5x^2+3x+9=x^3+x^2-6x^2-6x+9x+9=x^2\left(x+1\right)-6x\left(x+1\right)+9\left(x+1\right)\)

\(=\left(x^2-6x+9\right)\left(x+1\right)=\left(x-3\right)^2\left(x+1\right)\)

9 tháng 8 2018

b,\(^{x^6-x^4+4x^3+2x^2}\)

   \(x^6+4x^3+4-x^4+2x^2-4\)

   \(\left(x^3+2\right)^2-\left(x^2-2\right)^2\)

     \(\left(x^3-x^2+4\right)\cdot\left(x^3+x^2\right)\)

\(a^2\cdot\left(x+y\right)+b^2\cdot\left(x+y\right)-2ab\cdot\left(x+y\right)\)

\(\left(x+y\right)\cdot\left(a^2+b^2-2ab\right)\)

\(\left(x+y\right)\cdot\left(a-b\right)^2\)

xin lỗi vì ko có thời gian nên phần d bn tự làm nha 

13 tháng 10 2018

a) \(x^2+5x+6=x^2+2x+3x+6=x\left(x+2\right)+3\left(x+2\right)=\left(x+3\right)\left(x+2\right)\)

b) \(x^2-4x+3=x^2-x-3x+3=x\left(x-1\right)-3\left(x-1\right)=\left(x-3\right)\left(x-1\right)\)

c) \(x^2+5x+4=x^2+x+4x+4=x\left(x+1\right)+4\left(x+1\right)=\left(x+4\right)\left(x+1\right)\)

d) \(x^2-x-6=x^2+2x-3x-6=x\left(x+2\right)-3\left(x+2\right)=\left(x-3\right)\left(x+2\right)\)

13 tháng 10 2018

cảm ơn nha