\(x^4+2x^3+5x^2+4x+12\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2016

x4 + 2x3 + 5x2 + 4x -12=0

<=> x4 - x3 + 3x3 - 3x2 + 8x2 - 8x + 12x - 12 = 0

<=> ( x4 - x3 ) + ( 3x3 - 3x2 ) + ( 8x2 - 8x ) + ( 12x - 12 ) = 0

<=> ( x - 1 ) ( x3 + 3x2+ 8x +12) = 0
<=> ( x -1 ).[ ( x3 + 2x2 ) + ( x2 + 2x ) + ( 6x +1) ] = 0
<=>( x - 1). ( x + 2 ).( x2 + x + 6 ) = 0
<=> x = 1 hoặc x = -2

12 tháng 8 2018

a)  \(x^4+2x^3+5x^2+4x-12\)

\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)

\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)

\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)

8 tháng 10 2017

x4+4x3+5x2+2x+1 = x(x3+4x2+5x+2)+1

8 tháng 10 2017

Bút danh XXX

13 tháng 7 2017

a ) \(x^3-3x^2-4x+12\)

\(=x^2\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x^2-4\right)\left(x-3\right)\)

\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

b ) \(x^4-5x^2+4\)

\(=x^4-4x^2-x^2+4\)

\(=x^2\left(x^2-4\right)-\left(x^2-4\right)\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\)

\(=\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)\)

4 tháng 3 2021

a) \(4x^4+4x^3+5x^2+2x+1\)

\(x^2\left(4x^2+4x+5+\frac{4}{x}+\frac{1}{x^2}\right)\)

=\(x^2\left[\left(4x^2+\frac{1}{x^2}\right)+2\left(2x+\frac{1}{x}\right)+5\right]\)(1)

Đặt \(2x+\frac{1}{x}=a\)thì \(\left(2x+\frac{1}{x}\right)^2=a^2\)\(\Rightarrow4x^2+\frac{1}{x^2}=a^2-4\)

Thay vào (1), ta có:

\(x^2\left(a^2-4+2a+5\right)\)

=\(x^2\left(a^2+2a+1\right)\)

=\(x^2\left(a+1\right)^2\)

=\(\left[x\left(a+1\right)\right]^2\)

=\(\left[x\left(2x+\frac{1}{x}+1\right)\right]^2\)

=\(\left(2x^2+1+x\right)^2\)

\(=\left(2x^2+x+1\right)^2\)

3 tháng 3 2021

a) Đặt f(x) = 4x4 + 4x3 + 5x2 + 2x + 1

Sau khi phân tích thì đa thức có dạng ( 2x2 + ax + 1 )( 2x2 + bx + 1 )

=> f(x) = ( 2x2 + ax + 1 )( 2x2 + bx + 1 )

<=> f(x) = 4x4 + 2bx3 + 2x2 + 2ax3 + abx2 + ax + 2x2 + bx + 1

<=> f(x) = 4x4 + ( a + b )2x3 + ( ab + 4 )x2 + ( a + b )x + 1

Đồng nhất hệ số ta có : \(\hept{\begin{cases}a+b=2\\ab=1\end{cases}\Leftrightarrow}a=b=1\)

Vậy f(x) = 4x4 + 4x3 + 5x2 + 2x + 1 = ( 2x2 + x + 1 )2

b) 3x4 + 11x3 - 7x2 - 2x + 1

= 3x4 - x3 + 12x3 - 4x2 - 3x2 + x - 3x + 1

= x3( 3x - 1 ) + 4x2( 3x - 1 ) - x( 3x - 1 ) - ( 3x - 1 )

= ( 3x - 1 )( x3 + 4x2 - x - 1 )

18 tháng 11 2018

\(4x^4+4x^3+5x^2+6x+1\)

\(=4x^4+4x^3+5x^2+5x+x+1\)

\(=4x^3.\left(x+1\right)+5x.\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right).\left(4x+5x+1\right)\)

p/s: tớ nghĩ sai đề nên đổi ạ :))

15 tháng 12 2018

\(2x^3+x^2-4x-12=2x^3-4x^2+5x^2-10x+6x-12\)

\(=2x^2\left(x-2\right)+5x\left(x-2\right)+3\left(x-2\right)\)

\(=\left(x-2\right)\left(2x^2+5x+3\right)\)

\(=\left(x-2\right)\left[2x\left(x+1\right)+3\left(x+1\right)\right]\)

\(=\left(x-2\right)\left(x+1\right)\left(2x+3\right)\)

15 tháng 12 2018

Xin lỗi bạn, mình làm sai.

\(2x^3+x^2-4x-12=2x^2\left(x-2\right)+5x\left(x-2\right)+6\left(x-2\right)=\left(x-2\right)\left(2x^2+5x+6\right)\)

12 tháng 8 2018

bạn nào giúp mk vs ạ !!!

12 tháng 8 2018

a/  \(\left(x+2\right)\left(x+4\right)\left(x+3\right)^2-12=\left(x^2+6x+8\right)\left(x^2+6x+9\right)-12\)

đặt \(x^2+6x+8=y=>y\left(y+1\right)-12=y^2+2.\frac{1}{2}y+\frac{1}{4}-\frac{1}{4}-12=\left(y+\frac{1}{2}\right)^2-12,25=\left(y+12,75\right)\left(y-11,75\right)\)

27 tháng 10 2016

a, \(x^3-2x-4\) b, \(x^2+4x+3\) nhá

 

13 tháng 8 2017

Nghịch xíu :v

a, \(x^3-2x-4\)

\(=x^3-2x^2+2x^2-4x+2x-4\)

\(=x^2\left(x-2\right)-2x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2-2x+2\right)\)

b, \(x^2+4x+3\)

\(=x^2+x+3x+3=x\left(x+1\right)+3\left(x+1\right)\)

\(=\left(x+1\right)\left(x+3\right)\)

Chúc bạn học tốt!!!