Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-3x^2+3x-1-y^3\)
\(=\left(x-1\right)^3-y^3\)
\(=\left(x-1-y\right)\left[\left(x-1\right)^2+y\left(x-1\right)+y^2\right]\)
\(=\left(x-y-1\right)\left[\left(x-1\right)\left(x-1+y\right)+y^2\right]\)
\(x^3-3x^2+3x-1-y^3\\ =\left(x-1\right)^3-y^3\\ =\left(x-1-y\right)\text{[ (x-1)^2+y(x-1)+y^2}\)
\(=\left(x-y-1\right)\left[\left(x-1\right)\left(x-1+y\right)+y^2\right]\)
Ta có :
\(x^4+4\)
\(=\left(x^2\right)^2+2.x^2.2+2^2-\left(2x\right)^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
\(x^3-4x^2-12x+27\)
\(=x^3+3x^2-7x^2-21x+9x+27\)
\(=x^2\left(x+3\right)-7x\left(x+3\right)+9\left(x+3\right)\)
\(=\left(x^2-7x+9\right)\left(x+3\right)\)
Ta có :
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
Đặt \(x^2+5x+5=t\)
=> Đa thức trở thành
\(\left(t-1\right)\left(t+1\right)+1\)
\(=t^2-1+1\)
\(=t^2\)
Thay vào ta được
Đt=\(\left(x^2+5x+5\right)^2\)
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\) (1)
Đặt \(x^2+5x+5=t\) thì (1)
\(\Leftrightarrow\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+5x+5\right)^2\)
=x3(x+2)-13x2+12x-26x+24
=x3(x+2)-x(13x-12)-2(13x-12)
=x3(x+2)-(13x-12)(x+2)
=(x+2)(x3-x-12x+12)
(x+2)[(x2-1)-12(x-1)]
=(x+2)[x(x-1)(x+1)-12(x-1)]
=(x+2)(x-1)[x(x+1)-12]
=(x+2)(x-1)(x2+x-12)
=(x+2)(x-1)(x2-3x+4x-12)
=(x+2)(x-1)[x(x-3)+4(x+3)]
=(x+2)(x-1)(x-3)(x+4)
trong bài làm của mk có hàng k có dấu "=" chỗ đó có dâu"=" nha!
a) \(6x^2+6\)
\(=6\left(x^2+1\right)\)
b) \(2x^2-18\)
\(=2\left(x^2-9\right)\)
\(=2\left(x-3\right)\left(x+3\right)\)
c) \(3x^2-3xy+4x-4y\)
\(=\left(3x^2-3xy\right)+\left(4x-4y\right)\)
\(=3x\left(x-y\right)+4\left(x-y\right)\)
\(=\left(3x-4\right)\left(x-y\right)\)
a) \(\left(x^3-9x^2+27x-27\right)\)\(:\)\(\left(x-3\right)\)
\(=\left(x-3\right)^3\)\(:\)\(\left(x-3\right)\)
\(=\left(x-3\right)^2\)
c) \(\frac{x^2-4}{2x}:\frac{3x-6}{6}\)
\(=\frac{\left(x-2\right)\left(x+2\right)}{2x}.\frac{6}{3\left(x-2\right)}\)
\(=\frac{\left(x+2\right)}{x}\)
a)\(4x^4+y^4=\left(4x^4+y^4+4x^2y^2\right)-4x^2y^2\)
\(=\left(2x^2+y^2\right)^2-\left(2xy\right)^2\)
\(=\left(2x^2+y^2-2xy\right)\left(2x^2+y^2+2xy\right)\)
b)\(\left(x^2-3x-1\right)^2-12\left(x^2-3x-1\right)+27\)
Đặt x^2 - 3x - 1 = A
\(\Rightarrow A^2-12A+27=\left(A^2-12A+36\right)-9\)
\(=\left(A-6\right)^2-9=\left(A-6-3\right)\left(A-6+3\right)\)
\(=\left(A-9\right)\left(A-3\right)\)
Hay \(=\left(x^2-3x-1-9\right)\left(x^2-3x-1-3\right)\)
\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)
\(=\left(x-5\right)\left(x+2\right)\left(x-4\right)\left(x+1\right)\)
c)\(x^3-x^2-5x+125\)
\(=\left(x^3+5^3\right)-\left(x^2+5x\right)\)
\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
d)\(xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz\)
\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Mình có việc bận nên chỉ đưa được kết quả ý d) thật lòng mong các bạn tự tham khảo và giải
= (x^6 - x^4) - (9x^3 - 9x^2)
= x^4 (x^2 +1) - 9x^2 (x - 1)
= x^4 (x + 1) (x - 1) - 9x^2 (x - 1)
= (x - 1) {x^4 (x + 1) - 9x^2}
= (x - 1) (x^5 + x^4 - 9x^2)
= (x -1) {x^2 (x^3 + x^2 - 9)}
x6 - x 4- 9x3 + 9x2
= (x6 - x 4) - (9x3 - 9x2)
= x4 (x2 - 1) - 9x2 (x - 1)
= x4 (x-1) (x+1) - 9x2 (x - 1)
= x2 (x-1) (x2 (x+1) - 9)
= x2 (x-1) (x3 + x2 - 9)
x 2 - x+ y2 -y - 2xy - 7
= ( x2 - 2xy + y2 ) - ( x + y ) -7
= ( x + y )2 - ( x + y ) -7
= ( x + y ) [ ( x + y ) -7]
= ( x + y ) ( x + y - 7 )
\(x^4+2x^2-24\)
Đặt \(t=x^2\) ta có:
\(t^2+2t-24=t^2-4t+6t-24\)
\(=t\left(t-4\right)+6\left(t-4\right)\)
\(=\left(t+6\right)\left(t-4\right)\)
\(=\left(x^2+6\right)\left(x^2-4\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x^2+6\right)\)