Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-\left(x^2\right)^2\)
\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)
\(=\left(x^4+x^3+x^2\right)-\left(x^3-2007x^2-2007x-2008\right)\)
\(=x^2\left(x^2+x+1\right)-\left[x\left(x^2+x+1\right)-2008\left(x^2-x-1\right)\right]\)
\(=x^2\left(x^2+x+1\right)-\left(x^2+x+1\right)\left(x-2008\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)
a.\(x^2+7x+6\)
\(=x^2+x+6x+6\)
\(=x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x+6\right)\)
Sửa đề:.\(x^4+2008x^2+2007x+2008\)
\(=x^4+x^2+1+2007x^2+2007x+2007\)
\(=\left(x^4+x^2+1\right)+2007\left(x^2+x+1\right)\)
\(=\left(x^4+x^3+x^2-x^3-x^2-x+x^2+x+1\right)+2007\left(x^2+x+1\right)\)
\(=\left[x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\right]+2007\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+2007\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)
1. x4 + 2008x2 + 2007x + 2008
= (x4 + x2 + 1) + (2007x2 + 2007x + 1)
= (x2 + x + 1)(x2 - x + 1) + 2007(x2 + x + 1)
= (x2 + x + 1)(x2 - x + 2008)
2. x4 - 6x3 + 12x2 - 14x - 3
= x4 - 2x3 + 3x2 - 4x3 + 8x2 - 12x + x2 - 2x + 3
= x2(x2 - 2x + 3) - 4x(x2 - 2x + 3) + (x2 - 2x + 3)
= (x2 - 2x + 3)(x2 - 4x + 1)
bn ơi dòng 2 phải là (x4 + x2 + 1) + (2007x2 + 2007x + 2007 ) ms đúng
\(x^8+x^4+1\)
\(=\left(x^4\right)^2+2.x^4+1-x^4\)
\(=\left(x^4+1\right)-\left(x^2\right)^2\)
\(=\left(x^4+1-x^2\right)\left(x^4+x^2+1\right)\)
\(=\left(x^4+1-x^2\right)\left[\left(x^2\right)^2+2x^2+1-x^2\right]\)
\(=\left(x^4+1-x^2\right)\left[\left(x^2+1^2\right)-x^2\right]\)
\(=\left(x^4+1-x^2\right)\left(x^2+x+1\right)\left(x^2-x+1\right)\)
\(x^4+2008x^2+2007x+2008\)
\(=\left(x^4-x\right)+2008\left(x^2+x+1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+2008\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x-1+2008\right)\)
\(=\left(x^2+x+1\right)\left(x+2007\right)\)
Phân tích đa thức thành nhân tử:
a. \(2x^2-5x-7\)
b. \(x^3-5x^2+8x-4\)
c. \(x^4+2008x^2+2007x+2008\)
a.\(2x^2-5x-7\)
\(=2x^2-7x+2x-7\)
\(=\left(2x^2+2x\right)+\left(-7x-7\right)\)
\(=2x\left(x+1\right)-7\left(x+1\right)\)
\(=\left(2x-7\right)\left(x+1\right)\)
a)\(2x^2-5x-7\)
\(=\left(2x^2+2x\right)-\left(7x+7\right)\)
\(=\left(x+1\right)\left(2x-7\right)\)
b) \(x^3-5x^2+8x-4\)
\(=\left(x^3-x^2\right)-\left(4x^2-4x\right)+\left(4x-4\right)\)
\(=\left(x-1\right)\left(x^2-4x+4\right)\)
\(=\left(x-1\right)\left(x-2\right)^2\)
c)\(x^4+2008x^2+2007x+2008\)
\(=\left(x^4-x^3+2008x^2\right)+\left(x^3-x^2+2008x\right)+\left(x^2-x+2008\right)\)
\(=\left(x^2-x+2008\right)\left(x^2+x+1\right)\)
Ta có:
\(x^4+2008x^2+2007x+2008\)
\(=\left(x^4+x^2+1\right)+\left(2007x^2+2007x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+2007\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)
Cách này dễ hơn nè :
\(x^4+2008x^2+2007x+2008\)
= \(x^4-x+2008\left(x^2+x+1\right)\)
=\(x\left(x-1\right)\left(x^2+x+1\right)+2008\left(x^2+x+1\right)\)=\(\left(x^2+x+1\right)\left(x^2-x+2008\right)\)
Câu 1:
a) \(2x^2+5x-3=\left(2x^2+6x\right)-\left(x+3\right)\)
\(=2x\left(x+3\right)-\left(x+3\right)=\left(x+3\right)\left(2x-1\right)\)
b) \(x^4+2009x^2+2008x+2009\)
\(=\left(x^4-x\right)+\left(2009x^2+2009x+2009\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2009\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2009\right)\)
c) \(\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]=-16\) (đã sửa đề)
\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16=0\)
\(\Leftrightarrow\left(x^2+10x+20\right)^2-16+16=0\)
\(\Leftrightarrow\left(x^2+10x+20\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)^2-5=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5-\sqrt{5}\\x=-5+\sqrt{5}\end{cases}}\)
Câu 1.
a) 2x2 + 5x - 3 = 2x2 + 6x - x - 3 = 2x( x + 3 ) - ( x + 3 ) = ( x + 3 )( 2x - 1 )
b) x4 + 2009x2 + 2008x + 2009
= x4 + 2009x2 + 2009x - x + 2009
= ( x4 - x ) + ( 2009x2 + 2009x + 2009 )
= x( x3 - 1 ) + 2009( x2 + x + 1 )
= x( x - 1 )( x2 + x + 1 ) + 2009( x2 + x + 1 )
= ( x2 + x + 1 )[ x( x - 1 ) + 2009 ]
= ( x2 + x + 1 )( x2 - x + 2009 )
c) ( x + 2 )( x + 4 )( x + 6 )( x + 8 ) = 16 ( xem lại đi chứ không phân tích được :v )
Câu 2.
3x2 + x - 6 - √2 = 0
<=> ( 3x2 - 6 ) + ( x - √2 ) = 0
<=> 3( x2 - 2 ) + ( x - √2 ) = 0
<=> 3( x - √2 )( x + √2 ) + ( x - √2 ) = 0
<=> ( x - √2 )[ 3( x + √2 ) + 1 ] = 0
<=> \(\orbr{\begin{cases}x-\sqrt{2}=0\\3\left(x+\sqrt{2}\right)+1=0\end{cases}}\)
+) x - √2 = 0 => x = √2
+) 3( x + √2 ) + 1 = 0
<=> 3( x + √2 ) = -1
<=> x + √2 = -1/3
<=> x = -1/3 - √2
Vậy S = { √2 ; -1/3 - √2 }
Câu 3.
A = x( x + 1 )( x2 + x - 4 )
= ( x2 + x )( x2 + x - 4 )
Đặt t = x2 + x
A = t( t - 4 ) = t2 - 4t = ( t2 - 4t + 4 ) - 4 = ( t - 2 )2 - 4 ≥ -4 ∀ t
Dấu "=" xảy ra khi t = 2
=> x2 + x = 2
=> x2 + x - 2 = 0
=> x2 - x + 2x - 2 = 0
=> x( x - 1 ) + 2( x - 1 ) = 0
=> ( x - 1 )( x + 2 ) = 0
=> x = 1 hoặc x = -2
=> MinA = -4 <=> x = 1 hoặc x = -2
a) \(x^8+x+1\)
\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)
b) \(x^4+2008x^2+2007x+2008\)
\(=x^4+x^3+x^2-x^3-x^2-x+2008x^2+2008x+2008\)
\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2008\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)
giải phương trình:
\(x^4+2008x^2+2007x+2008\)
\(=x\left[x\left(x^2+2008\right)+2007\right]+2008\)
\(=\left[\left(x-1\right)x+2008\right]\left(x^2+x+1\right)\)
\(=\left(x^2-x+2008\right)\left(x^2+x+1\right)\)
~(‾▿‾~)