\(x^4+2008x^2+2007x+2008\)

Giải phương trình...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

giải phương trình:

  1. Nếu \(x\ge1\)phương trình trở thành : \(x^2-3x+2=x-1\Leftrightarrow x^2-4x+3=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}TM}\)
  2. Nếu \(x< 1\)\(\Rightarrow x^2-3x+2=1-x\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1L\)VẬY NGHIỆM PHƯƠNG TRÌNH LÀ : x=1 hoặc x=3
30 tháng 5 2017

   \(x^4+2008x^2+2007x+2008\)

\(=x\left[x\left(x^2+2008\right)+2007\right]+2008\)

\(=\left[\left(x-1\right)x+2008\right]\left(x^2+x+1\right)\)

\(=\left(x^2-x+2008\right)\left(x^2+x+1\right)\)

~(‾▿‾~)

24 tháng 3 2019

a)\(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-\left(x^2\right)^2\)

\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\)

\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)

24 tháng 3 2019

\(=\left(x^4+x^3+x^2\right)-\left(x^3-2007x^2-2007x-2008\right)\)

\(=x^2\left(x^2+x+1\right)-\left[x\left(x^2+x+1\right)-2008\left(x^2-x-1\right)\right]\)

\(=x^2\left(x^2+x+1\right)-\left(x^2+x+1\right)\left(x-2008\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)

1 tháng 6 2021

a.\(x^2+7x+6\)

\(=x^2+x+6x+6\)

\(=x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(x+6\right)\)

Sửa đề:.\(x^4+2008x^2+2007x+2008\)

\(=x^4+x^2+1+2007x^2+2007x+2007\)

\(=\left(x^4+x^2+1\right)+2007\left(x^2+x+1\right)\)

\(=\left(x^4+x^3+x^2-x^3-x^2-x+x^2+x+1\right)+2007\left(x^2+x+1\right)\)

\(=\left[x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\right]+2007\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+2007\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)

1 tháng 6 2021

Trả lời:

a, x2 + 7x + 6

= x2 + x + 6x + 6

= ( x2 + x ) + ( 6x + 6 )

= x ( x + 1 ) + 6 ( x + 1 )

= ( x + 6 ) ( x + 1 )

12 tháng 10 2017

1. x4 + 2008x2 + 2007x + 2008

= (x4 + x2 + 1) + (2007x2 + 2007x + 1)

= (x2 + x + 1)(x2 - x + 1) + 2007(x2 + x + 1)

= (x2 + x + 1)(x2 - x + 2008)

2. x4 - 6x3 + 12x2 - 14x - 3

= x4 - 2x3 + 3x2 - 4x3 + 8x2 - 12x + x2 - 2x + 3

= x2(x2 - 2x + 3) - 4x(x2 - 2x + 3) + (x2 - 2x + 3)

= (x2 - 2x + 3)(x2 - 4x + 1)

23 tháng 10 2018

bn ơi dòng 2 phải là (x4 + x2 + 1) + (2007x2 + 2007x + 2007 ) ms đúng

23 tháng 3 2019

\(x^8+x^4+1\)

\(=\left(x^4\right)^2+2.x^4+1-x^4\)

\(=\left(x^4+1\right)-\left(x^2\right)^2\)

\(=\left(x^4+1-x^2\right)\left(x^4+x^2+1\right)\)

\(=\left(x^4+1-x^2\right)\left[\left(x^2\right)^2+2x^2+1-x^2\right]\)

\(=\left(x^4+1-x^2\right)\left[\left(x^2+1^2\right)-x^2\right]\)

\(=\left(x^4+1-x^2\right)\left(x^2+x+1\right)\left(x^2-x+1\right)\)

\(x^4+2008x^2+2007x+2008\)

\(=\left(x^4-x\right)+2008\left(x^2+x+1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)+2008\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x-1+2008\right)\)

\(=\left(x^2+x+1\right)\left(x+2007\right)\)

1 tháng 12 2017

a.\(2x^2-5x-7\)

\(=2x^2-7x+2x-7\)

\(=\left(2x^2+2x\right)+\left(-7x-7\right)\)

\(=2x\left(x+1\right)-7\left(x+1\right)\)

\(=\left(2x-7\right)\left(x+1\right)\)

1 tháng 12 2017

a)\(2x^2-5x-7\)

\(=\left(2x^2+2x\right)-\left(7x+7\right)\)

\(=\left(x+1\right)\left(2x-7\right)\)

b) \(x^3-5x^2+8x-4\)

\(=\left(x^3-x^2\right)-\left(4x^2-4x\right)+\left(4x-4\right)\)

\(=\left(x-1\right)\left(x^2-4x+4\right)\)

\(=\left(x-1\right)\left(x-2\right)^2\)

c)\(x^4+2008x^2+2007x+2008\)

\(=\left(x^4-x^3+2008x^2\right)+\left(x^3-x^2+2008x\right)+\left(x^2-x+2008\right)\)

\(=\left(x^2-x+2008\right)\left(x^2+x+1\right)\)

9 tháng 4 2017

Ta có:

\(x^4+2008x^2+2007x+2008\)

\(=\left(x^4+x^2+1\right)+\left(2007x^2+2007x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+2007\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)

9 tháng 4 2017

Cách này dễ hơn nè :

\(x^4+2008x^2+2007x+2008\)

= \(x^4-x+2008\left(x^2+x+1\right)\)

=\(x\left(x-1\right)\left(x^2+x+1\right)+2008\left(x^2+x+1\right)\)=\(\left(x^2+x+1\right)\left(x^2-x+2008\right)\)

11 tháng 10 2020

Câu 1:

a) \(2x^2+5x-3=\left(2x^2+6x\right)-\left(x+3\right)\)

\(=2x\left(x+3\right)-\left(x+3\right)=\left(x+3\right)\left(2x-1\right)\)

b) \(x^4+2009x^2+2008x+2009\)

\(=\left(x^4-x\right)+\left(2009x^2+2009x+2009\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2009\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2009\right)\)

c) \(\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]=-16\) (đã sửa đề)

\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16=0\)

\(\Leftrightarrow\left(x^2+10x+20\right)^2-16+16=0\)

\(\Leftrightarrow\left(x^2+10x+20\right)^2=0\)

\(\Leftrightarrow\left(x+5\right)^2-5=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-5-\sqrt{5}\\x=-5+\sqrt{5}\end{cases}}\)

11 tháng 10 2020

Câu 1.

a) 2x2 + 5x - 3 = 2x2 + 6x - x - 3 = 2x( x + 3 ) - ( x + 3 ) = ( x + 3 )( 2x - 1 )

b) x4 + 2009x2 + 2008x + 2009 

= x4 + 2009x2 + 2009x - x + 2009 

= ( x4 - x ) + ( 2009x2 + 2009x + 2009 )

= x( x3 - 1 ) + 2009( x2 + x + 1 )

= x( x - 1 )( x2 + x + 1 ) + 2009( x2 + x + 1 )

= ( x2 + x + 1 )[ x( x - 1 ) + 2009 ]

= ( x2 + x + 1 )( x2 - x + 2009 )

c) ( x + 2 )( x + 4 )( x + 6 )( x + 8 ) = 16 ( xem lại đi chứ không phân tích được :v )

Câu 2. 

3x2 + x - 6 - √2 = 0

<=> ( 3x2 - 6 ) + ( x - √2 ) = 0

<=> 3( x2 - 2 ) + ( x - √2 ) = 0

<=> 3( x - √2 )( x + √2 ) + ( x - √2 ) = 0

<=> ( x - √2 )[ 3( x + √2 ) + 1 ] = 0

<=> \(\orbr{\begin{cases}x-\sqrt{2}=0\\3\left(x+\sqrt{2}\right)+1=0\end{cases}}\)

+) x - √2 = 0 => x = √2

+) 3( x + √2 ) + 1 = 0

<=> 3( x + √2 ) = -1

<=> x + √2 = -1/3

<=> x = -1/3 - √2

Vậy S = { √2 ; -1/3 - √2 }

Câu 3.

A = x( x + 1 )( x2 + x - 4 )

= ( x2 + x )( x2 + x - 4 )

Đặt t = x2 + x

A = t( t - 4 ) = t2 - 4t = ( t2 - 4t + 4 ) - 4 = ( t - 2 )2 - 4 ≥ -4 ∀ t

Dấu "=" xảy ra khi t = 2

=> x2 + x = 2

=> x2 + x - 2 = 0

=> x2 - x + 2x - 2 = 0

=> x( x - 1 ) + 2( x - 1 ) = 0

=> ( x - 1 )( x + 2 ) = 0

=> x = 1 hoặc x = -2

=> MinA = -4 <=> x = 1 hoặc x = -2

7 tháng 10 2016

a) \(x^8+x+1\)

\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)

\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)

b) \(x^4+2008x^2+2007x+2008\)

\(=x^4+x^3+x^2-x^3-x^2-x+2008x^2+2008x+2008\)

\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2008\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)

2 tháng 11 2018

\(x^8+x+1\)

\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)

\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+x^2+x+1\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)