K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2015

x^4+2014x^2+2013x+2014 = x^4+2013x^2+x^2+2013x+2013+1

                                        =(x^4+x^2+1)+2013(x^2+x+1)

                                       =(x^2+1)^2-x^2+2013(x^2+x+1)

                                       =(x^2-x+1)(x^2+x+1)+2013(x^2+x+1)

                                       =(x^2+x+1)(x^2+x+2014)

28 tháng 11 2017

x^4+2014x^2+2013x+2014 = x^4+2013x^2+x^2+2013x+2013+1
=(x^4+x^2+1)+2013(x^2+x+1)
=(x^2+1)^2-x^2+2013(x^2+x+1)
=(x^2-x+1)(x^2+x+1)+2013(x^2+x+1)

31 tháng 12 2014

ta có:

x^4+2014x^2+2013x+2014 = x^4+2013x^2+x^2+2013x+2013+1

                                        =(x^4+x^2+1)+2013(x^2+x+1)

                                       =(x^2+1)^2-x^2+2013(x^2+x+1)

                                       =(x^2-x+1)(x^2+x+1)+2013(x^2+x+1)

                                       =(x^2+x+1)(x^2+x+2014)

x4+2014x2+2013x+2014=(x4-x)+(2014x2+2014x+2014)

                                  =x(x-1)(x2+x+1)+2014(x2+x+1)

                                  =(x^2+x+1)(x2-x+2014)

29 tháng 10 2020

\(a^3-3a+3b-b^3=\left(a^3-b^3\right)-3\left(a-b\right)=\left(a-b\right)\left(a^2+b^2+ab-3\right)\)

\(x^2-2014x+2013=x^2-2013x-x+2013=x\left(x-2013\right)-\left(x-2013\right)=\left(x-2013\right)\left(x-1\right)\)

29 tháng 10 2020

a3 - 3a + 3b - b3

= ( a3 - b3 ) - ( 3a - 3b )

= ( a - b )( a2 + ab + b2 ) - 3( a - b )

= ( a - b )( a2 + ab + b2 - 3 )

x2 - 2014x + 2013

= x2 - 2013x - x + 2013

= x( x - 2013 ) - ( x - 2013 )

= ( x - 2013 )( x - 1 )

trả lời

xx^4+2015x^2+2014x+2015=x^4+2015x^2+2015x-x+2015=x\left(x^3-1\right)+2015\left(X^2+x+1\right)=x\left(x-1\right)\left(x^2+x+1\right)+2015\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^2-x+2015\right)xx4+2015x2+2014x+2015=x4+2015x2+2015xx+2015=x(x31)+2015(X2+x+1)=x(x1)(x2+x+1)+2015(x2+x+1)=(x2+x+1)(x2x+2015)

hc tốt

13 tháng 6 2019

\(x^4+2015x^2+2014x+2015\)

\(=\left(x^4-x\right)+2015x^2+2015x+2015\)

\(=x\left(x^3-1\right)+2015\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2015\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2015\right)\)

13 tháng 8 2015

 

 x4+2015x2+2014x+2015

=x4-x+2015x2+2015x+2015

=x.(x3-1)+2015.(x2+x+1)

=x.(x-1)(x2+x+1)+2015.(x2+x+1)

=(x2+x+1)(x2-x+2015)

13 tháng 8 2015

\(x^4+2015x^2+2014x+2015=\left(x^4+x^3+x^2\right)-\left(x^3+x^2+x\right)+\left(2015x^2+2015x+2015\right)\)

\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2015\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^2-x+2015\right)\)

28 tháng 12 2016

Đặt \(x^2=y\Rightarrow Q=y^2+2014y+2013\sqrt{y}+2014\)

Xét \(2013\sqrt{y}\) thì \(y\ge0\) để \(2013\sqrt{y}\)đúng.

Do đó: \(Q=y^2+2014y+2013\sqrt{y}+2014\ge2014>0\)

Vậy Q luôn dương với mọi số

3 tháng 7 2019

\(x^8+3x^4+4\)

\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)

\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)

\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)

3 tháng 7 2019

\(4x^4+4x^3+5x^2+2x+1\)

\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)

\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)

\(=\left(2x^2+x+1\right)^2\)

27 tháng 10 2020

Đơn giản thôi :]>

Sau khi phân tích thì P(x) có dạng ( x2 + dx + 2 )( x2 + ax - 2 )

P(x) = x4 - x3 - 2x - 4 = ( x2 + dx + 2 )( x2 + ax - 2 )

⇔ x4 - x3 - 2x - 4 = x4 + ax3 - 2x2 + dx3 + adx2 - 2dx + 2x2 + 2ax - 4

⇔ x4 - x3 - 2x - 4 = x4 + ( a + d )x3 + adx2 + ( 2a - 2d )x - 4

Đồng nhất hệ số ta được : 

\(\hept{\begin{cases}a+d=-1\\ad=0\\2a-2d=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-1\\d=0\end{cases}}\)

( x2 + dx + 2 )( x2 + ax - 2 )

= ( x2 + 2 )( x2 - x - 2 )

= ( x2 + 2 )( x2 - 2x + x - 2 )

= ( x2 + 2 )[ x( x - 2 ) + ( x - 2 ) ]

= ( x2 + 2 )( x - 2 )( x + 1 )

=> P(x) = x4 - x3 - 2x - 4 = ( x2 + 2 )( x - 2 )( x + 1 )

18 tháng 8 2017

\(x^2\left(x^2+4x\right)-\left(x^2-4\right)\)

\(=x^4+4x^2-x^2+4\)

\(=\left(x^2+2\right)-x^2\)

\(=\left(x^2+2+x\right)\left(x^2+2-x\right)\)