
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Chúng ta cùng phân tích đa thức sau thành nhân tử:
Đề bài:
\(\left(\right. x + y \left.\right)^{2} - 2 \left(\right. x + y \left.\right) + 1\)
🔍 Bước 1: Đặt ẩn phụ
Vì biểu thức này có dạng lặp lại của \(\left(\right. x + y \left.\right)\), ta đặt:
\(t = x + y\)
Thay vào biểu thức ban đầu, ta được:
\(t^{2} - 2 t + 1\)
✨ Bước 2: Phân tích biểu thức bậc hai
Xét biểu thức:
\(t^{2} - 2 t + 1\)
Đây là hằng đẳng thức dạng:
\(t^{2} - 2 t + 1 = \left(\right. t - 1 \left.\right)^{2}\)
🔁 Bước 3: Thay lại \(t = x + y\)
\(\left(\right. t - 1 \left.\right)^{2} = \left(\right. x + y - 1 \left.\right)^{2}\)
✅ Kết luận:
\(\left(\right. x + y \left.\right)^{2} - 2 \left(\right. x + y \left.\right) + 1 = \left(\right. x + y - 1 \left.\right)^{2}\)
Ta có: \(\left(x+y\right)^2-2\left(x+y\right)+1\)
\(=\left(x+y\right)^2-2\cdot\left(x+y\right)\cdot1+1^2\)
\(=\left(x+y-1\right)^2\)

\(x^2+y^2-x^2y^2+xy-x-y\)
\(\Leftrightarrow x^2\left(1-y\right)\left(1+y\right)-y\left(1-y\right)-x\left(1-y\right)\)
\(\Leftrightarrow\left(1-y\right)\left(x^2+x^2y-y-x\right)\)
\(\Leftrightarrow\left(1-y\right)\left(x+y\right)\left(x-1\right)\left(x+1\right)\)

a)\(x^2-y^2-x+3y-2=\left(x^2+xy-2x\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)\)
\(=x\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)\)
\(=\left(x+y-2\right)\left(x-y+1\right)\)
b)\(x^3+y^3+6xy+x+y-10\)
\(=\left(x^3+xy^2-x^2y+2x^2+2xy+5x\right)+\left(y^3+x^2y+xy^2+2y^2+2xy+5y\right)-\left(2x^2+2y^2-2xy+4x+4y+10\right)\)
\(=x\left(x^2+y^2-xy+2x+2y+5\right)+y\left(y^2+x^2-xy+2y+2x+5\right)-2\left(x^2+y^2-xy+2x+2y+5\right)\)\(=\left(x+y-2\right)\left(x^2+y^2-xy+2x+2y+5\right)\)

x2 + 4x + y - 9y2
<=> x(x + 4) + y(1 + 9y)
<=> (x + y)(x + 4 + 1 + 9y)
<=> (x + y)(x + 9y + 5)
bí rồi

x4 + 2x3 + x2 - y2
= ( x4 + 2x3 + x2 ) - y2
= [ ( x2 )2 + 2.x2.x + x2 ] - y2
= ( x2 + x )2 - y2
= ( x2 + x - y )( x2 + x + y )
\(=x^2\left(x^2+2x+1\right)-y^2\)
\(=x^2\left(x+1\right)^2-y^2\)
\(=x^2\left(x+1-y\right)\left(x+1+y\right)\)

Ta có : \(F=x^2-4^x+4-y^2\)
\(=\left(x^2-4^x+4\right)-y^2\)( nhóm hạng tử )
\(=\left(x-2\right)^2-y^2\)( đẳng thức số 2 )
\(=\left(x-2-y\right)\left(x-2+y\right)\)( đẳng thức số 3 )
Vậy : \(F=\left(x-2-y\right)\left(x-2+y\right)\)



\(y\left(x-y\right)^2+xy\left(x-y\right)\)
\(=\left(xy-y^2\right)\left(x-y\right)+xy\left(x-y\right)\)
\(=\left(xy-y^2+xy\right)\left(x-y\right)\)
\(=\left(2xy-y^2\right)\left(x-y\right)\)
y ( x - y)2 + xy ( x-y) = (x - y) [(x-y) y +xy]
= (x-y) ( 2xy -y2)
