Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chịu rùi
bài này khó quá nguyen truong giang
chúc bn học tốt
nhae$
hihi
x2 + y2 - x2y2 + xy - x - y
=(x2-x2y2)+(y2-y)+(xy-x)
=x2(1-y)(1+y)-y(1-y)-x(1-y)
=(1-y)(x2+x2y-x-y)
=(1-y)[(x2-y)+(x2-x)]
=(1-y)[y(x-1)(x+1)+x(x-1)]
=(1-y)(x-1)(xy+x+y)
x2 + y2 - x2y2 + xy - x - y = (x2-x) + (y2-y) + (-x2y2 + xy) = x(x+1) + y(y+1) + xy(xy+1) = ( x+ y+ xy)( x + 1 + y + 1 + xy + 1)
a) \(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
a) Ta có: \(x^4+2x^3-4x-4\)
\(=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)
\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\cdot\left(x^2+2x+2\right)\)
\(x^2-2xy+y^2+3x-3y-4\)
\(=\left(x-y\right)^2-1+3x-3y-3\)
\(=\left[\left(x-y\right)^2-1^2\right]+\left(3x-3y-3\right)\)
\(=\left[\left(x-y\right)-1\right]\left[\left(x-y\right)+1\right]+3\left(x-y-1\right)\)
\(=\left(x-y-1\right)\left(x-y+1\right)+3\left(x-y-1\right)\)
\(=\left(x-y-1\right)\left[\left(x-y+1\right)+3\right]\)
\(=\left(x-y-1\right)\left(x-y+4\right)\)
\(x^2-4x-y^2+4=\left(x^2-4x+4\right)-y^2=\left(x-2\right)^2-y^2=\left(x-2-y\right)\left(x-2+y\right)\)
`x^2 -4x+4-y^2`
`=(x^2 -4x+4)-y^2`
`=(x-2)^2 -y^2`
`=(x-2-y)(x-2+y)`
`x^2+2xy+y^2-x-y`
`=(x^2+2xy+y^2) -(x+y)`
`=(x+y)^2 -(x+y)`
`=(x+y)(x+y-1)`
`x^2-2xy+y^2-9`
`=(x^2-2xy+y^2)-3^2`
`=(x-y)^2-3^3`
`=(x-y-3)(x-y+3)`
Tách ra đi cậu.
a: \(x^2-4xy+4y^2-2x+4y-35\)
\(=\left(x^2-4xy+4y^2\right)-\left(2x-4y\right)-35\)
\(=\left(x-2y\right)^2-2\left(x-2y\right)-35\)
\(=\left(x-2y\right)^2-7\left(x-2y\right)+5\left(x-2y\right)-35\)
\(=\left(x-2y\right)\left(x-2y-7\right)+5\left(x-2y-7\right)\)
\(=\left(x-2y-7\right)\left(x-2y+5\right)\)
c: \(\left(xy+ab\right)^2+\left(ay-bx\right)^2\)
\(=x^2y^2+a^2b^2+2xyab+a^2y^2-2aybx+b^2x^2\)
\(=x^2y^2+a^2y^2+a^2b^2+b^2x^2\)
\(=y^2\left(x^2+a^2\right)+b^2\left(a^2+x^2\right)\)
\(=\left(x^2+a^2\right)\left(y^2+b^2\right)\)
a: \(=x\left(x-7y\right)+\left(x-7y\right)=\left(x-7y\right)\left(x+1\right)\)
\(x^2+y^2-x^2y^2+xy-x-y\)
\(=\left(x^2-x^2y^2\right)+\left(y^2-y\right)+\left(xy-x\right)\)
\(=x^2\left(y-1\right)\left(-1-y\right)+y\left(y-1\right)+x\left(y-1\right)\)
\(=\left(y-1\right)\left(-x^2-x^2y+y+x\right)\)
\(=\left(y-1\right)\left[-x\left(x-1\right)-y\left(x-1\right)\left(x+1\right)\right]\)
\(=\left(y-1\right)\left(x-1\right)\left(-x-xy-y\right)\)