K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

Có sai đề không vậy bạn?

6 tháng 7 2017

ko sai

3 tháng 7 2017

x^4-2x^3-x^2-2x^3+4x^2+2x-6

=x^4+3x^2+2x-6

=x^4-x^3+x^3-x^2+4x^2-4x+6x-6

=x^3.(x-1)+x^2.(x-1)+4x.(x-1)+6.(x-1)

=(x^3+x^2+4x+6).(x_1)

nhớ cho mk nha

3 tháng 7 2017

bạn tác sai hay sao ý 
-2x^3-2x^3 sao lại hết đc nhìn kĩ lại đi

19 tháng 8 2015

a/ \(=x^4+x^2+1+2x^3+2x+2x^2=\left(x^2+x+1\right)^2\)

b/ \(=y^4+\left(-2x^2-34\right)y^2+32xy+x^4-34x^2+225\)

câu này bn coi lại đc k , mk k lm ra 

2 tháng 9 2018

Hướng dẫn thôi :

a) x ( x + 2 ) ( x^2 - 6x + 4 )

b) ( x + 1 ) ( x + 2 ) ( x - 2 )

2 tháng 9 2018

cách làm cơ

NV
1 tháng 9 2021

\(=x^2\left(x^2+2x+1\right)+x+1\)

\(=x^2\left(x+1\right)^2+x+1\)

\(=\left(x+1\right)\left[x^2\left(x+1\right)+1\right]\)

\(=\left(x+1\right)\left(x^3+x^2+1\right)\)

\(x^4+2x^3+x^2+x+1\)

\(=x^2\left(x+1\right)^2+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3+x^2+1\right)\)

4 tháng 7 2017

\(=\left(x^2+4x-3\right)^2-5\left(x^2+4x-3\right)+6x^2\)

\(=x^4+16x^2+9+8x^3-24x-6x^2-5x^2-20x+15+6x^2\)

\(=x^4+8x^3+11x^2-44x+24\)

\(=\left(x^4-x^3\right)+\left(9x^3-9x^2\right)+\left(20x^2-20x\right)-\left(24x-24\right)\)

\(=x^3\left(x-1\right)+9x^2\left(x-1\right)+20x\left(x-1\right)-24\left(x-1\right)\)

\(=\left(x-1\right)\left(x^3+9x^2+20x-24\right)\)

10 tháng 2 2018

a, = [(x-2).(x+1)]^2+(x-2)^2

    = (x-2)^2.(x+1)^2+(x-2)^2

    = (x-2)^2.[(x+1)^2+1]

    = (x-2)^2.(x^2+2x+2)

Tk mk nha

10 tháng 2 2018

b)  \(6x^5+15x^4+20x^3+15x^2+6x+1\)

\(=6x^5+3x^4+12x^4+6x^3+14x^3+7x^2+8x^2+4x+2x+1\)

\(=\left(2x+1\right)\left(3x^4+6x^3+7x^2+4x+1\right)\)

\(=\left(2x+1\right)\left(3x^4+3x^3+3x^2+3x^3+3x^2+3x+x^2+x+1\right)\)

\(=\left(2x+1\right)\left(x^2+x+1\right)\left(3x^2+3x+1\right)\)

1: \(x^2-2x-24=\left(x-6\right)\left(x+4\right)\)

2: \(x^2-8x+15=\left(x-3\right)\left(x-5\right)\)

3: \(x^2-9x+14=\left(x-2\right)\left(x-7\right)\)

1 tháng 9 2021

\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\\ =\left(x+4\right)^2\left(x^2-1\right)-\left(x^2-1\right)\\ =\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\\ =\left(x-1\right)\left(x+1\right)\left(x+4-1\right)\left(x+4+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+5\right)\)

1 tháng 9 2021

\(= (x+4)^2(x^2-1)-(x^2-1)=[(x+4)^2-1](x^2-1)\)

\(=(x+4-1)(x+4+1)(x-1)(x+1)\)

\(=(x+3)(x+5)(x-1)(x+1)\)