K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)

\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-10\)

\(=\left(x^2+x+5\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)

9 tháng 7 2017

Ta có

a,    x2-x-y2-y

=x2-y2-(x+y)

=(x-y)(x+y) - (x+y)

=(x+y)(x-y-1)

b,   x2-2xy+y2-z2

=(x-y)2-z2

=(x-y-z)(x-y+z)

9 tháng 7 2017

con bai 32, 33 neu ban tra loi duoc minh h them

21 tháng 9 2017

sau bạn nên viết dấu nũa nhé!

21 tháng 9 2017

bạn có biết viết dấu ko nếu ko biết mik bảo cho s là sắc f là huyền x là ngã  r là hỏi j là nặng

5 tháng 10 2019

Gợi ý:

Nhóm:\(\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-8\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-8\)

Đặt \(t=x^2+5x+4\) thì biểu thức trở thành:

\(t\left(t+2\right)-8=t^2+2t-8=\left(t-2\right)\left(t+4\right)\)

Rồi bạn làm tiếp, nếu còn phân tích được thì phải phân tích, mình bận rồi.

5 tháng 10 2019

(x + 1)(x + 2)(x + 3)(x + 4) - 8

= [(x + 1)(x + 4)][(x + 2)(x + 3)] - 8

= (x2 + 4x + x + 4)(x2 + 3x + 2x + 6) - 8

= (x2 + 5x + 4)(x2 + 5x + 6) - 8

Đặt x2 + 5x + 5 = t

⇒ (x2 + 5x + 5 - 1)(x2 + 5x + 5 + 1) - 8 (1)

Thay t = x2 + 5x + 5 vào (1), ta có:

(t - 1)(t + 1) - 8 = t2 - 1 - 8 = t2 - 9

= (t - 3)(t + 3)

⇔ (x2 + 5x + 5 - 3)(x2 + 5x + 5 + 3)

= (x2 + 5x + 2)(x2 + 5x + 8)

Chúc bạn học tốt !!!!!!!! vuivuivui

22 tháng 7 2016

\(=\left(x.x-x+2\right)+\left(x-2\right)\)

\(=x\left(x-x+2-2\right)=x.0\)

22 tháng 7 2016

=x2-x+2+x-2

=x2

8 tháng 4 2016

x(x+2)(x^2+2x+2)+1 = (x^2+2x)(x^2+2x+1)+1

Đặt x^2+2x+1=y ta được:

(y-)(y+1)+1=y^2-1+1=y^2

= (x^2+2x+1)^2

= ( x + 1 )^4

12 tháng 9 2021

Thay `x = 2` ta được :

`x^4+x^3-9x^2+10x-8`

`= 2^4 + 2^3 - 9*2^2 + 10*2 - 8`

`= 16 + 8 - 36 + 20 - 8`

`= 0`

Vậy `x = 2` là nghiệm của phương trình trên 

Do đó ta thực hiện phép chia :

\(\left(x^4+x^3-9x^2+10x-8\right):\left(x-2\right)\)

x^4+x^3-9x^2+10x-8 x-2 x^3+3x^2-3x+4 x^4-2x^3 - 3x^3-9x^2+10x-8 3x^3-6x^2 - -3x^2+10x-8 -3x^2+6x - 4x-8 4x-8 - 0

Vậy \(x^4+x^3-9x^2+10x-8=\left(x-2\right)\left(x^3+3x^2-3x+4\right)\).