Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(x^2-2x+2=\left(x^2-2x+1\right)+1=\left(x-1\right)^2+1\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+1\ge1\forall x\)
\(\Rightarrow\left(x-1\right)^2+1>0\forall x\)
\(\Rightarrow\)đa thức \(x^2-2x+2\)vô nghiệm
\(\Rightarrow\)đa thức \(x^2-2x+2\)không phân tích được thành nhân tử
Cái kia tương tự
Tham khảo nhé~
\(2\left(x^2+x+1\right)^2-\left(2x+1\right)^2-\left(x^2+2x\right)^2\)
\(=2\left(x^4+2x^3+3x^2+2x+1\right)-4x^2-4x-1-x^4-4x^3-4x^2\)
\(=2x^4+4x^3+6x^2+4x+2-4x^2-4x-1-x^4-4x^3-4x^2\)
\(=x^4-2x^2+1\)
\(=\left(x^2-1\right)^2\)
\(=\left[\left(x-1\right)\left(x+1\right)\right]^2\)
\(=\left(x-1\right)^2\left(x+1\right)^2\)
Chúc bạn học tốt.
\(\left(x-1\right)^2-2\left(x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)
\(=\left(x-1-2x-1\right)^2=\left(-x-2\right)^2=\left(x+2\right)^2\)
\(x^4-5x^2+4=\left(x^2-4\right)\left(x^2-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)