K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
7 tháng 11 2021

Đặt \(a=x-y,b=y-z\)suy ra \(x-z=a+b\).

\(\left(x-y\right)^3+\left(y-z\right)^3+\left(x-z\right)^3\)

\(=a^3+b^3+\left(a+b\right)^3\)

\(=a^3+b^3+a^3+b^3+3ab\left(a+b\right)\)

\(=2\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a+b\right)\)

\(=\left(a+b\right)\left(2a^2+ab+2b^2\right)\)

\(=\left(x-z\right)\left[2\left(x-y\right)^2+\left(x-y\right)\left(y-z\right)+2\left(y-z\right)^2\right]\)

\(=\left(x-z\right)\left(2x^2-3xy-xz+3y^2-3yz+2z^2\right)\)

4 tháng 9 2019

\(\left(x-y\right)z^3+\left(y-z\right)x^3+\left(z-x\right)y^3\)

\(=\left(x-y\right)z^3-\left[\left(x-y\right)+\left(z-x\right)\right]x^3+\left(z-x\right)y^3\)

\(=\left(x-y\right)z^3-\left(x-y\right)x^3-\left(z-x\right)x^3+\left(z-x\right)y^3\)

\(=\left(x-y\right)\left(z^3-x^3\right)-\left(z-x\right)\left(x^3-y^3\right)\)

\(=\left(x-y\right)\left(z-x\right)\left(z^2+zx+x^2\right)-\left(z-x\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=\left(x-y\right)\left(z-x\right)\left(z^2+zx+x^2-x^2-xy-y^2\right)\)

\(=\left(x-y\right)\left(z-x\right)\left[\left(x^2-x^2\right)+\left(zx-xy\right)+\left(z^2-y^2\right)\right]\)

\(=\left(x-y\right)\left(z-x\right)\left[x\left(z-y\right)+\left(z-y\right)\left(y+z\right)\right]\)

\(=\left(x-y\right)\left(z-x\right)\left(z-y\right)\left(x+y+z\right)\)

\(=-\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x+y+z\right)\)

13 tháng 6 2015

a) \([(x-y)3 + (y-z)3]+ (z-x)3\)=\(\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)

\(=\left(x-z\right)\left[\left(\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right)\right]\)

\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]=\left(x-z\right)\left[\left(x-2y+z\right)\left(x+z\right)-\left(x-y\right)\left(x+y-2z\right)\right]\)

\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-x-y+2z\right)=\left(x-z\right)\left(x-y\right)\left(z-y\right)3\)

b) \(=y^2\left(x^2y-x^3+z^3-z^2y\right)-z^2x^2\left(z-x\right)=y^2\left[-y\left(z^2-x^2\right)-\left(z^3-x^3\right)\right]-z^2x^2\left(z-x\right)\)

\(=y^2\left(z-x\right)\left(-yz-xy-z^2-zx-x^2\right)-z^2x^2\left(z-x\right)=\left(z-x\right)\left(-y^3z-xy^2-z^2y^2-xyz-x^2y^2-z^2x^2\right)\)

đến đây coi như là thành nhân tử rồi nha. em muốn gọn thì ráng ngồi nghĩ rồi tách nha. chỉ cần nhóm mấy cái có ngoặc giống nhau là đc. k khó đâu. chịu khó nghĩ để rèn luyện nha

c) \(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)

\(\left(9a^3-6a^2\right)+\left(6a^2-4a\right)+\left(-9a+6\right)=3a^2\left(3a-2\right)+2a\left(3a-2\right)-3\left(3a-2\right)=\left(3a-2\right)\left(3a^2+2a-3\right)\)

d) em sửa đề đi. đề sai rồi. đồng nhất hệ số phải có dấu bằng nha.

có gì liên hệ chị. đúng nha ;)

28 tháng 6 2016

(x-y)3+(y-z)3+(z-x)3

=(x-y+y-z)[(x-y)2-(x-y)(y-z)+(y-z)2]+(z-x)3

=(x-z)[(x-y)2-(x-y)(y-z)+(y-z)2-(z-x)2]

=(x-z)[(x-y)(x-y-y+z)+(y-z+z-x)(y-z-z+x)]

=(x-z)(x-y)(x-2y+z-y+2z-x)

=3(x-z)(x-y)(z-y)

5 tháng 11 2017

thắng nguyễn bạn giải cụ thể hơn đc không

11 tháng 9 2016

Ta có: (x-y)^3+(y-z)^3+(z-x)^3 
Bạn để ý thấy (x-y)^3+(y-z)^3 là hằng đẳng thức dạng A^3+B^3=(A+B)(A^2-AB+B^2). Vậy ta có thể phân tích (x-y)^3+(y-z)^3 như sau 
(x-y+y-z)((x-y)^2-(x-y)(y-z)+(y-z)^2) 
(x-z)((x-y)^2-(x-y)(y-z)+(y-z)^2) 
-(z-x)((x-y)^2-(x-y)(y-z)+(y-z)^2) 
Đến đây thì bạn đã có nhân tử chung là (z-x)

31 tháng 7 2017

Ta có: (x-y)^3+(y-z)^3+(z-x)^3 

Bạn để ý thấy (x-y)^3+(y-z)^3 là hằng đẳng thức dạng A^3+B^3=(A+B)(A^2-AB+B^2). Vậy ta có thể phân tích (x-y)^3+(y-z)^3 như sau 

(x-y+y-z)((x-y)^2-(x-y)(y-z)+(y-z)^2) 

(x-z)((x-y)^2-(x-y)(y-z)+(y-z)^2) 

-(z-x)((x-y)^2-(x-y)(y-z)+(y-z)^2) 

Đến đây thì bn đã có nhân tử chung là (z-x). 

14 tháng 10 2017

= [(x+y)³ + z³] - 3xy(x+y+z) 
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z) 
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy] 
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy) 
= (x+y+z)(x² + y² + z² - xy - xz - yz). 
~~~~~~~~ 
Bài làm trên mình đã sử dụng hằng đẳng thức đáng nhớ sau: 
(a+b)³ = a³ + 3a²b + 3ab² + b³ = a³ + b³ + 3ab(a-b) 
=> a³ + b³ = (a+b)³ - 3ab(a-b). 
Chúc bạn học giỏi!

14 tháng 10 2017

Làm như sau bạn nha: 

   z3(x - y) + x3(y-z) + y3(z-x) = z3(x-y)  - x3(x-y) - x3(z-x) + y3(z-x) = (x-y)(z3 - x) - (z-x)(x3 - y3)

  = (x-y)(z-x)(z2-zx+x2) - (z-x)(x-y)(x2-xy+y2)

 = (x-y)(z-x)(z2-zx+x2 - x2+xy-y2)

 = (x-y)(z-x)(z-y)(x+y+z)

11 tháng 11 2019

\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2+z^3-x^3-y^3-z^3\)

\(=x^3+y^3+3x^2y+3xy^2+3z\left(x^2+2xy+y^2\right)+3xz^2+3yz^2-x^3-y^3\)

\(=3x^2y+3xy^2+3x^2z+6xyz+3zy^2+3xz^2+3yz^2\)

\(=3xy\left(x+y\right)+3xz\left(x+y\right)+3zy\left(x+y\right)+3z^2\left(x+y\right)\)

\(=\left(x+y\right)\left(3xy+3xz+3zy+3z^2\right)\)

\(=3\left(x+y\right)\left(xy+xz+zy+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

18 tháng 12 2016

= x3 + y3 + z+ 3(x + y )(y+z)(z + x) - x3y3 - z3

= 3(x + y)(y + z)(z + x)

10 tháng 6 2018

a, x^4 - 5x^2 + 4

= x^4 - 4x^2- x+ 4

= x^2  . (x^2 - 4) - (x^2 - 4)

= (x^2 - 4) . (x^2 - 1)

= (x - 2) . (x + 2) . (x - 1) . (x + 1)