Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 4a2b2 -(a2+b2 -c2)2 =[2ab-(a2+b2-c2)][2ab+a2+b2-c2]
=[c2-(a-b)2][(a+b)2-c2]
=(-a+b+c)(a-b+c)(a+b+c)(a+b-c)
Có sai sót nào mong bỏ qua :)
ta có \(4a^2b^4-\left(a^2+b^2-c^2\right)^2\)
= \(\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)
Theo hằng đẳng thức thứ 3 ta có:
\(\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)
=\(\left[\left(a^2+2.a.b+b^2\right)-c^2\right]\left[-\left(a^2-2.a.b+b^2\right)+c^2\right]\)
=\(\left[\left(a+b\right)^2-c^2\right]\left[-\left(a-b\right)^2+c\right]\)
=\(\left(a+b+c\right)\left(a+b-c\right)\left(a+b+c\right)\left(a+b-c\right)\)
=\(2\left(a+b+c\right)2\left(a+b-c\right)\)
=\(\left(2a+2b+2c\right)\left(2a+2b-2c\right)\)
\(\left(x^2+x+1\right)\left(x^2+3x+1\right)+x^2\)
\(=x^4+x^3+x^2+3x^3+3x^2+3x+x^2+x+1+x^2\)
\(=x^4+4x^3+6x^2+4x+1\)
\(=\left(x+1\right)^4\)
\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(=ab\left(a-b\right)+bc\left[\left(b-a\right)-\left(c-a\right)\right]+ca\left(c-a\right)\)
\(=ab\left(a-b\right)-bc\left(a-b\right)-bc\left(c-a\right)+ca\left(c-a\right)\)
\(=\left(a-b\right)\left(ab-bc\right)-\left(c-a\right)\left(bc-ca\right)\)
\(=b\left(a-b\right)\left(a-c\right)-c\left(c-a\right)\left(b-a\right)\)
\(=b\left(a-b\right)\left(a-c\right)-c\left(a-c\right)\left(a-b\right)\)
\(=\left(a-c\right)\left(a-b\right)\left(b-c\right)\)
\(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3-a^3-b^3-c^3\)
\(=a^3+b^3+3a^2b+3ab^2+3c\left(a^2+2ab+b^2\right)+3ac^2+3bc^2-a^3-b^3\)
\(=3a^2b+3ab^2+3a^2c+6abc+3b^2c+3ac^2+3bc^2\)
\(=3\left(a^2b+ab^2+a^2c+ac^2+2abc+b^2c+bc^2\right)\)
\(=3\left(a^2b+ab^2+a^2c+ac^2+abc+abc+b^2c+bc^2\right)\)
\(=3\left[ab\left(a+b\right)+c^2\left(a+b\right)+ac\left(a+b\right)+bc\left(a+b\right)\right]\)
\(=3\left(a+b\right)\left(ab+c^2+ac+bc\right)\)
\(=3\left(a+b\right)\left[c\left(a+c\right)+b\left(a+c\right)\right]\)
\(=3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
(x + 2y - 3)2 - 4(x + 2y - 3) + 4
= (x + 2y - 3)2 - 2. 2. (x + 2y - 3) + 22 (hằng đẳng thức số 2, bình phương của một hiệu)
= ( x + 2y - 3 - 2)2
= ( x + 2y - 5)2
Có \(\left(x^2+4x+4\right)^3-y^6=\left(x+2\right)^6-y^6\)
=\(\left[\left(x+2\right)^3+y^3\right]\left[\left(x+2\right)^3-y^3\right]\)=\(\left(x+2+y\right)\left(x^2+4x+4-xy-2y+y^2\right)\left(x+2-y\right)\left(x^2+4x+4+xy+2y+y^2\right)\)
a^3x-x-ab+b
=x(a-1)(a^2+a+1)-b(a-1)
=(a-1)(a^2x+xa+x-b)