\(\sqrt{21}+\sqrt{3}+\sqrt{7}+1\)  1

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

\(\sqrt{21}+\sqrt{3}+\sqrt{7}+1\)

\(=\sqrt{3}\left(\sqrt{7}+1\right)+\left(\sqrt{7}+1\right)\)

\(=\left(\sqrt{7}+1\right)\left(\sqrt{3}+1\right)\)

\(\sqrt{1-a}+\sqrt{1-a^2}\)

\(=\sqrt{1-a}+\sqrt{\left(1-a\right)\left(1+a\right)}\)

\(=\sqrt{1-a}\left(1+\sqrt{1+a}\right)\)

22 tháng 6 2019

\(ab+b\sqrt{a}+\sqrt{a}+1\)

(đk: \(a\ge0\))

\(=b\sqrt{a}\left(\sqrt{a}+1\right)+\sqrt{a}+1=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)

22 tháng 6 2019

ĐK: \(x,y\ge0\)

\(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=x\left(\sqrt{x}+\sqrt{y}\right)-y\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)\left(x-y\right)\)

\(=\left(\sqrt{x}+\sqrt{y}\right)^2\left(\sqrt{x}-\sqrt{y}\right)\)

16 tháng 7 2019

\(\text{a)}x\sqrt{x}+\sqrt{x}-x-1\)

\(=\left(x\sqrt{x}+\sqrt{x}\right)-\left(x+1\right)\)

\(=\sqrt{x}\left(x+1\right)-\left(x+1\right)\)

\(=\left(x+1\right)\left(\sqrt{x}-1\right)\)

\(\text{b)}\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6\)

\(=\left(\sqrt{ab}+2\sqrt{a}\right)+\left(3\sqrt{b}+6\right)\)

\(=\sqrt{a}\left(\sqrt{b}+2\right)+3\left(\sqrt{b}+2\right)\)

\(=\left(\sqrt{b}+2\right)\left(\sqrt{a}+3\right)\)

\(\text{c)}\left(1+\sqrt{x}\right)^2-4\sqrt{x}\)

\(=\left(1+\sqrt{x}\right)^2-\left(2\sqrt{\sqrt{x}}\right)^2\)

\(=\left(1+\sqrt{x}+2\sqrt{\sqrt{x}}\right)\left(1+\sqrt{x}-2\sqrt{\sqrt{x}}\right)\)

\(\text{d)}\sqrt{ab}-\sqrt{a}-\sqrt{b}+1\)

\(=\left(\sqrt{ab}-\sqrt{a}\right)-\left(\sqrt{b}-1\right)\)

\(=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)\)

\(=\left(\sqrt{b}-1\right)\left(\sqrt{a}-1\right)\)

\(\text{e)}a+\sqrt{a}+2\sqrt{ab}+2\sqrt{b}\)

\(=\left(a+\sqrt{a}\right)+\left(2\sqrt{ab}+2\sqrt{b}\right)\)

\(=\left[\left(\sqrt{a}\right)^2+\sqrt{a}\right]+\left(2\sqrt{ab}+2\sqrt{b}\right)\)

\(=\sqrt{a}\left(\sqrt{a}+1\right)+2\sqrt{b}\left(\sqrt{a}+1\right)\)

\(=\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\sqrt{b}\right)\)

\(\text{f)}x-2\sqrt{x-1}-a^2\)

\(=\left(\sqrt{x-2}\right)^2\left(\sqrt{\sqrt{x-1}}\right)^2-a^2\)

\(=\left(\sqrt{x-2}\sqrt{\sqrt{x-1}}\right)^2-a^2\)

\(=\left(\sqrt{x-2\sqrt{x-1}}\right)^2-a^2\)

\(=\left(\sqrt{x-2\sqrt{x-1}}+a\right)\left(\sqrt{x-2\sqrt{x-1}}-a\right)\)

1: \(a\sqrt{a}-1=\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)\)

2: \(a+2\sqrt{a}+1=\left(\sqrt{a}+1\right)^2\)

3: \(a\sqrt{a}+1=\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)\)

14 tháng 8 2019

\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1\)

\(=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)\)

\(=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)

14 tháng 8 2019

\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)

\(=\sqrt{a}\left(\sqrt{a}+1\right)+2\sqrt{b}\left(\sqrt{a}+1\right)=\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\sqrt{b}\right)\)

23 tháng 12 2016

a, \(1-a\sqrt{a}\)

\(=\left[1-\left(\sqrt{a}\right)^3\right]\)

\(=\left(1-\sqrt{a}\right)\left[\left(\sqrt{a}\right)^2+1.\sqrt{a}+1^2\right]\)

\(=\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)\)

b, \(x-2\sqrt{x-1}\)

\(=\left(x-1\right)-2\sqrt{x-1}+1\)

\(=\left[\left(\sqrt{x-1}\right)-1\right]^2\)

4 tháng 10 2020

a) \(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}\)

\(=a\sqrt{a}-b\sqrt{b}+a\sqrt{b}-b\sqrt{a}\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)-\left(\sqrt{a}-\sqrt{b}\right)\sqrt{ab}\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b-\sqrt{ab}\right)\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+b\right)\)

4 tháng 10 2020

b) \(x-y+\sqrt{xy^2}-\sqrt{y^3}\)

\(=\left(x-y\right)+\left(y\sqrt{x}-y\sqrt{y}\right)\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{x}-\sqrt{y}\right)\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+y\right)\)

\(A,ĐKXĐ:x;y\ge0\)

\(A=\sqrt{xy}-2\sqrt{y}-5\sqrt{x}+10\)

\(=\sqrt{y}\left(\sqrt{x}-2\right)-5\left(\sqrt{x}-2\right)\)

\(=\left(\sqrt{x}-2\right)\left(\sqrt{y}-5\right)\)

\(ĐKXĐ:x;y\ge0\)

\(B=a\sqrt{x}+b\sqrt{y}-\sqrt{xy}-ab\)

\(=\left(a\sqrt{x}-\sqrt{xy}\right)+\left(b\sqrt{y}-ab\right)\)

\(=\sqrt{x}\left(a-\sqrt{y}\right)+b\left(\sqrt{y}-a\right)\)

\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)

\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)

\(=\left(a-\sqrt{y}\right)\left(\sqrt{x}-b\right)\)