\(\left(6x+5\right)^2\left(3x+2\right)\left(x+1\right)-6\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2018

Ta có (6x+5)2(3x+2)(x+1)-35

= (36x2+60x+25)(3x2+5x+2)-35 (1)

Đặt a=3x2+5x+2

=> 12a+1= 12(3x2+5x+2)+1 =36x2+60x+25

Thay a=3x2+5x+2 vào (1) ta được

(12a+1).a-35=12a2+a-35

= 12a2-20a+21a-35

= 4a(3a-5)+7(3a-5)

= (3a-5)(4a+7) (2)

Thay 3x2+5x+2=a vào (2) ta được

(9x2+15x+6-5)(12x2+20x+8+7)

= (9x2+15x+1)(12x2+20x+15)

Ta có: \(\left(6x+5\right)^2\left(3x+2\right)\left(x+1\right)-35\)

\(=\left(36x^2+60x+25\right)\left(3x^2+5x+2\right)-35\)(1)

Đặt \(3x^2+5x+2=y\)

\(\left(1\right)=\left(12y+1\right)y-35\)

\(=12y^2+y-35\)

\(=\left(3y-5\right)\left(4y+7\right)\)

\(=\left(9x^2+15x+1\right)\left(12x^2+20x+15\right)\)

3 tháng 9 2018

Đặt: \(x^2-6x+1=a;x^2+1=b\)

Khi đó đa thức này có dạng:

\(2a^2+5ab+2b^2=2a^2+4ab+ab+2b^2\)

\(=2a\left(a+2b\right)+b\left(a+2b\right)=\left(a+2b\right)\left(2a+b\right)\)

Thay lại a và b thì được:

\(\left(a+2b\right)\left(2a+b\right)=\left(x^2-6x+1+2x^2+2\right)\left(2x^2-12x+2+x^2+1\right)\)

\(=\left(3x^2-6x+3\right)\left(3x^2-12x+3\right)\)

\(=9\left(x-1\right)^2\left(x^2-4x+1\right)\)

Vậy ...

27 tháng 10 2018

c) Đặt \(A=\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)

Đặt \(x^2+3x+1,5=a\)

\(\Rightarrow A=\left(a-0,5\right)\left(a+0,5\right)-6\)

\(\Rightarrow A=a^2-0,25-6\)

\(\Rightarrow A=a^2-\frac{25}{4}\)

\(\Rightarrow A=\left(a-\frac{5}{2}\right)\left(a+\frac{5}{2}\right)\)

Thay \(a=x^2+3x+0,5\)vào A ta có :

\(A=\left(x^2+3x+0,5-\frac{5}{2}\right)\left(x^2+3x+0,5+\frac{5}{2}\right)\)

\(A=\left(x^2+3x-2\right)\left(x^2+3x+3\right)\)

27 tháng 10 2018

c, Đặt \(x^2+3x+2=a\)

Ta có : \(\left(a-1\right)a-6=a^2-a-6=\left(a^2-3a\right)+\left(2a-6\right)\)

                                                                       \(=a\left(a-3\right)+2\left(a-3\right)\)

                                                                       \(=\left(a+2\right)\left(a-3\right)\)

                                                                        \(=\left(x^2+3x+4\right)\left(x^2+3x-1\right)\)

Câu d làm tương tự .

Gợi ý : (x+3)(x+5) = x2 + 8x + 15 

đặt bằng a rồi giải tiếp

11 tháng 10 2020

Ta có: \(3x^2\left(y-x\right)+6x^2\left(x-y\right)^2\)

\(=3x^2\left(y-x\right)+6x^2\left(y-x\right)^2\)

\(=3x^2\left(y-x\right)\left[1-2\left(y-x\right)\right]\)

\(=3x^2\left(y-x\right)\left(2x-2y+1\right)\)

11 tháng 10 2020

3x2( y - x ) + 6x2( x - y )2

= 3x2( y - x ) + 6x2( y - x )2

= 3x2( y - x )[ 1 + 2( y - x ) ]

= 3x2( y - x )( 2y - 2x + 1 )

10 tháng 10 2020

a) \(3^2\left(y-x\right)+6x^2\left(x-y\right)^2\)

\(=3\left(y-x\right)\left[3+2x^2\left(y-x\right)\right]\)

\(=3\left(y-x\right)\left(3+2x^2y-2x^3\right)\)

b) \(x^4-3x^3+3x-1\)

\(=\left(x^4+x^3\right)-\left(4x^3+4x^2\right)+\left(4x^2+4x\right)-\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3-4x^2+4x-1\right)\)

\(=\left(x+1\right)\left[\left(x^3-x^2\right)-\left(3x^2-3x\right)+\left(x-1\right)\right]\)

\(=\left(x+1\right)\left(x-1\right)\left(x^2-3x+1\right)\)

\(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)

Đặt \(x^2+3x+1=a,\)ta được:

\(a\left(a+1\right)-6\)

\(=a^2+a-6=\left(a^2+3a\right)-\left(2a+6\right)\)

\(=a\left(a+3\right)-2\left(a+3\right)=\left(a+3\right)\left(a-2\right)\)

Thay \(a=x^2+3x+1,\)ta được:

\(\left(x^2+3x+1+3\right)\left(x^2+3x+1-2\right)\)\(=\left(x^2+3x+4\right)\left(x^2+3x-1\right)\)