K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2020

\(f\left(x\right)=x^4+8x^3+28x^2+48x-13\)

\(=\left(x^4+4x^3+7x^2\right)+\left(4x^3+16x^2+28x\right)+\left(5x^2+20x+35\right)-48\)

\(=x^2\left(x^2+4x+7\right)+4x\left(x^2+4x+7\right)+5\left(x^2+4x+7\right)-48\)

\(=\left(x^2+4x+7\right)\left(x^2+4x+5\right)-48\)

đặt t=\(x^2+4x+6\)khi đó g(t)=(t-1)(t+1)-48=t2-49=(t-7)(y+7)

vậy f(x)=(x2+4x-1)(x2+4x+13)

22 tháng 7 2020

Trả lời:

Thay \(f\left(x\right)=0\), ta có:

\(0=x^4+8x^3+28x^2+48x-13\)

\(\Leftrightarrow-x^4-8x^3-28x^2-48x+13=0\)

\(\Leftrightarrow-x^4-4x^3-4x^3+x^2-16x^2-13x^2+4x-56x+13=0\)

\(\Leftrightarrow\left(-x^4-4x^3+x^2\right)+\left(-4x^3-16x^2+4x\right)+\left(-13x^2-56x+13\right)=0\)

\(\Leftrightarrow-x^2.\left(x^2+4x-1\right)-4x.\left(x^2+4x-1\right)-13.\left(x^2+4x-1\right)=0\)

\(\Leftrightarrow\left(-x^2-4x-13\right).\left(x^2+4x-1\right)=0\)

Vì \(-x^2-4x-13=-x^2-4x-4-9\)

                                     \(=-\left(x^2+4x+4\right)-9\)

                                     \(=-\left(x+2\right)^2-9< 0\forall x\)

\(\Rightarrow x^2+4x-1=0\)

\(\Leftrightarrow\left(x^2+4x+4\right)-5=0\)

\(\Leftrightarrow\left(x+2\right)^2=5=\left(\pm\sqrt{5}\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=\sqrt{5}\\x+2=-\sqrt{5}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2+\sqrt{5}\\x=-2-\sqrt{5}\end{cases}}\)

Vậy đa thức có 2 nghiêm \(x\in\left\{-2+\sqrt{5},-2-\sqrt{5}\right\}\)

20 tháng 2 2018

\(x^4+8x^3+28x^2+48x-13\)

\(=x^4+4x^3+13x^2+4x^3+16x^2+52x-x^2-4x-13\)

\(=x^2\left(x^2+4x+13\right)+4x\left(x^2+4x+13\right)-\left(x^2+4x+13\right)\)

\(=\left(x^2+4x-1\right)\left(x^2+4x+13\right)\)

26 tháng 12 2021

tách nhỏ câu hỏi ra bạn

26 tháng 12 2021

\(a.10x\left(x-y\right)-6y\left(y-x\right)\\ =10x\left(x-y\right)+6y\left(x-y\right)\\ =\left(10x-6y\right)\left(x-y\right)\\ =2\left(5x-3y\right)\left(x-y\right)\)

\(b.14x^2y-21xy^2+28x^3y^2\\ =7xy\left(x-y+xy\right)\)

\(c.x^2-4+\left(x-2\right)^2\\ =\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\\ =\left(x-2\right)\left(x+2+x-2\right)\\ =2x\left(x-2\right)\)

\(d.\left(x+1\right)^2-25\\ =\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)

 

AH
Akai Haruma
Giáo viên
21 tháng 8 2023

Lời giải:

a. 

$(xy)^2-xy-2=(x^2y^2+xy)-(2xy+2)$

$=xy(xy+1)-2(xy+1)=(xy+1)(xy-2)$

b. Bạn xem lại đoạn $-16x^2$ là dấu - hay + vậy?

=(x^2+8x)^2+23(x^2+8x)+135

Cái này ko phân tích được nha bạn

17 tháng 6 2023

\(\left(x^2+8x+8\right)\left(x^2+8x+15\right)+15\\ \Leftrightarrow\left(x^4+8x^3+15x^2+8x^3+64x^2+120x+8x^2+64x+120\right)+15\\ \Leftrightarrow x^4+16x^3+87x^2+184x+135\)

 

22 tháng 8 2023

\(8x^3+36x^2y+54xy^2+27y^3\\ =\left(2x\right)^3+3.\left(2x\right)^2.3y+3.2x.\left(3y\right)^2+\left(3y\right)^3\\ =\left(2x+3y\right)^3\\ =\left(2x+3y\right)\left(2x+3y\right)\left(2x+3y\right)\)

\(\left(x-y\right)^3-\left(x+y\right)^3\\ =\left(x-y-x-y\right)\left(x^2-2xy+y^2+x^2-y^2+x^2+2xy+y^2\right)\\ =-2y\left(3x^2+y^2\right)\)

\(\left(x+1\right)^3+\left(x-1\right)^3\\ =\left(x+1+x-1\right)\left(x^2+2x+1-x^2+1+x^2-2x+1\right)\\ =2x\left(x^2+3\right)\)

\(\left(x-1\right)^2-\left(x+1\right)^2\\ =\left(x-1-x-1\right)\left(x-1+x+1\right)\\ =-2.2x=-4x\)

a: =(2x)^3+3*(2x)^2*3y+3*2x*(3y)^2+(3y)^3

=(2x+3y)^3

b: (x-y)^3-(x+y)^3

=(x-y-x-y)[(x-y)^2+(x-y)(x+y)+(x+y)^2]

=-2y*[x^2-2xy+y^2+x^2-y^2+x^2+2xy+y^2]

=-2y(3x^2+y^2)

c: (x+1)^3+(x-1)^3

=(x+1+x-1)[(x+1)^2-(x+1)(x-1)+(x-1)^2]

=2x*[x^2+2x+1-x^2+1+x^2-2x+1]

=2x(x^2+3)

d: =(x-1-x-1)(x-1+x+1)

=2x*(-2)=-4x

b mk thấy nó sai đề sao ý 

c) \(C=\left(x^2+x+4\right)^2+8x\left(x^2+x+4\right)+15x^2\)

\(=\left(x^2+x+4\right)^2+2.4x.\left(x^2+x+4\right)+16x^2-x^2\)

\(=\left(x^2+x+4+4x\right)^2-x^2\)

\(=\left(x^2+5x+4\right)^2-x^2\)

\(=\left(x^2+5x+4-x\right)\left(x^2+5x+4+x\right)=\left(x^2+4x+4\right)\left(x^2+6x+4\right)\)

22 tháng 12 2020

    x2+x-30

=x2-5x+6x-30

=x(x-5)+6(x-5)

=(x+6)(x-5)

22 tháng 12 2020

a)

x2-4x+4-x2+5x=13

x+4=13

x=9

10 tháng 7 2021

`(x+3)^4+(x+5)^4-2`

`={[(x+3)^2]^2-1^2}+{[(x+5)^2]^2 -1^2}`

`=[(x+3)^2-1^2][(x+3)^2+1]+[(x+5)^2-1^2][(x+5)^2+1]`

`=(x+3-1)(x+3+1)[(x+3)^2+1]+(x+5-1)(x+5+1)[(x+5)^2+1]`

`=(x+2)(x+4)[(x+3)^2+1]+(x+4)(x+6)[(x+5)^2+1]`

`=(x+4){(x+2)[(x+3)^2+1]+(x+6)[(x+5)^2+1]}`

`=(x+4)(2x^3+24x^2+108x+176)`

10 tháng 7 2021

Bạn gì ơi hình như phải ra \(2\left(t+4\right)^2\left(x^2+8x+22\right)\)chứ nhỉ???