K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2016

\(a,x^2+2xy+x+2y\)

\(=\left(x^2+x\right)+\left(2xy+2y\right)\)

\(=x\left(x+1\right)+2y\left(x+1\right)\)

 \(=\left(x+1\right)\left(x+2y\right)\)

\(b,7x^2-7xy-5x+5y\)

\(=\left(7x^2-5x\right)+\left(-7xy+5y\right)\)

\(=x\left(7x-5\right)-y\left(7x-5\right)\)

\(=\left(7x-5\right)\left(x-y\right)\)

\(c,x^2-6x+9-9y^2\)

\(=\left(x^2-6x\right)+\left(9-9y^2\right)\)

nếu mình nhóm như vậy thì làm không được với lại mấy cách khác cụng không xong phải làm sao mình không bik

cấu d bạn chác bik mà 

15 tháng 7 2016

sao bạn

16 tháng 11 2021

\(1,\\ a,=6x^4-15x^3-12x^2\\ b,=x^2+2x+1+x^2+x-3-4x=2x^2-x-2\\ c,=2x^2-3xy+4y^2\\ 2,\\ a,=7x\left(x+2y\right)\\ b,=3\left(x+4\right)-x\left(x+4\right)=\left(3-x\right)\left(x+4\right)\\ c,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ d,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ 3,\\ a,\Leftrightarrow3x\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

16 tháng 11 2021

Câu 1

a)\(3x^2\left(2x^2-5x-4\right)=6x^4-15x^3-12x^2\)

b)\(\left(x+1\right)^2+\left(x-2\right)\left(x+3\right)-4x=x^2+2x+1+x^2+3x-2x-6-4x=2x^2-x-5\)

 

2 tháng 9 2021

Bài 2:

a) \(3x^2-7x-10=\left(x+1\right)\left(3x-10\right)\)

b) \(x^2+6x+9-4y^2=\left(x+3\right)^2-\left(2y\right)^2=\left(x+3-2y\right)\left(x+3+2y\right)\)

c) \(x^2-2xy+y^2-5x+5y=\left(x-y\right)^2-5\left(x-y\right)=\left(x-y\right)\left(x-y-5\right)\)

d) \(4x^2-y^2-6x+3y=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)

e) \(1-2a+2bc+a^2-b^2-c^2=\left(a-1\right)^2-\left(b-c\right)^2=\left(a-1-b+c\right)\left(a-1+b-c\right)\)

f) \(x^3-3x^2-4x+12=\left(x+2\right)\left(x-3\right)\left(x-2\right)\)

g) \(x^4+64=\left(x^2+8\right)^2-16x^2=\left(x^2+8-4x\right)\left(x^2+6+4x\right)\)h) \(x^4-5x^2+4=\left(x+2\right)\left(x+1\right)\left(x-1\right)\left(x-2\right)\)

i) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+16=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+16=\left(x^2+8x+7\right)^2+8\left(x^2+8x+7\right)+16=\left(x^2+8x+11\right)^2\)

 

a: \(3x^2-7x-10\)

\(=3x^2+3x-10x-10\)

\(=\left(x+1\right)\left(3x-10\right)\)

b: \(x^2+6x+9-4y^2\)

\(=\left(x+3\right)^2-4y^2\)

\(=\left(x+3-2y\right)\left(x+3+2y\right)\)

c: \(x^2-2xy+y^2-5x+5y\)

\(=\left(x-y\right)^2-5\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-5\right)\)

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

a. 

$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$

b.

$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$

c.

$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$

d.

$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$

$=(x+1)(x^2-4x+1)$

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

e.

$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$

$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$

f.

$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$

$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$

g.

$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$

$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$

$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$

$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$

h.

$x^6+2x^5+x^4-2x^3-2x^2+1$

$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$

$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$

19 tháng 1 2017

a) (x - 2)(x - 3).                        b) 3(x - 2)(x + 5).

c) (x - 2)(3x + 1).                     d) (x-2y)(x - 5y).

e) (x + l)(x + 2)(x - 3).             g) (x-1)(x + 3)( x 2  + 3).

h) (x + y - 3)(x - y + 1).

Bài 2:

a: =x(x^2-25)

=x(x-5)(x+5)

b: =x(x-2y)+3(x-2y)

=(x-2y)(x+3)

c: =(2x-3)(4x^2+6x+9)+2x(2x-3)

=(2x-3)(4x^2+8x+9)

2 tháng 1 2023

bài 1 đâu

20 tháng 7 2017

\(a.2x^3+6x=2x\left(x^2+3\right)\)

\(=2x\left(x^2+3\right)-2x\left(x^2+3\right)\)

\(=\left(x^2+3\right)\left(2x-2x\right)\)

\(b.5x\left(x-2\right)-3x^2\left(x-2\right)\)

\(=\left(x-2\right)\left(5x-3x^2\right)\)

\(c.3x\left(x-5y\right)-2y\left(5y-x\right)\)

\(=3x\left(x-5y\right)+2\left(x-5y\right)\)

\(=\left(x-5y\right)\left(3x+2\right)\)

\(d.y^2\left(x^2+y\right)-x^3-xy\)

\(=y^2\left(x^2+y\right)-x\left(x^2+y\right)\)

\(=\left(x^2+y\right)\left(y^2-x\right)\)

e. Cái bài này ghi lại đàng hoàng xíu nha t k hỉu

\(f.3x^2\left(y^2-2x\right)-15x\left(2x-y^2\right)\)

\(=3x^2\left(y^2-2x\right)+15x\left(y^2-2x\right)\)

\(=\left(y^2-2x\right)\left(3x^2+15x\right)\)

31 tháng 7 2021

a) x3+4x-5 = x3-x2+x2+4x-5=(x3-x2)+(x2-x)+(5x-5)=x2(x-1)+x(x-1)+5(x-1)=(x2+x+5)(x-1)

b) x3-3x2+4=x3-2x2-x2+4=(x3-2x2)-(x2-4)=x2(x-2)-(x-2)(x+2)=(x2-x+2)(x-2)

c) x3+2x2+3x+2=x3+x2+x2+x+2x+2=(x3+x2)+(x2+x)+(2x+2)=x2(x+1)+x(x+1)+2(x+1)=(x2+x+2)(x+1)

d) bạn xem lại đề đúng ko

e) (x2+3x)2-2(x2+3x)-8=x4+6x3+9x2-2x2-6x-8=x4+6x3+7x2-6x-8=x4-x3+7x3-7x2+14x2-14x+8x-8=(x4-x3)+(7x3-7x2)+(14x2-14x)+(8x-8)=x3(x-1)+7x2(x-1)+14x(x-1)+8(x-1)=(x3+7x2+14x+8)(x-1)=(x3+x2+6x2+6x+8x+8)(x-1)=\(\left[\left(x^3+x^2\right)+\left(6x^2+6x\right)+\left(8x+8\right)\right]\left(x-1\right)\)\(=\left[x^2\left(x+1\right)+6x\left(x+1\right)+8\left(x+1\right)\right]\left(x-1\right)\)\(=\left(x^2+6x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left(x^2+2x+4x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left[\left(x^2+2x\right)+\left(4x+8\right)\right]\left(x+1\right)\left(x-1\right)\)\(=\left[x\left(x+2\right)+4\left(x+2\right)\right]\left(x+1\right)\left(x-1\right)\)=\(\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)

f) (x2+4x+10)2-7(x2+4x+11)+7=(x2+4x+10)2-\(\left[7\left(x^2+4x+11\right)-7\right]\)\(=\left(x^2+4x+10\right)^2-7\left(x^2+4x+10\right)\)\(=\left(x^2+4x+10\right)\left(x^2+4x+3\right)\)

a) Ta có: \(x^3+4x-5\)

\(=x^3-x+5x-5\)

\(=x\left(x-1\right)\left(x+1\right)+5\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+5\right)\)

b) Ta có: \(x^3-3x^2+4\)

\(=x^3+x^2-4x^2+4\)

\(=x^2\left(x+1\right)-4\left(x-1\right)\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-4x+4\right)\)

\(=\left(x+1\right)\cdot\left(x-2\right)^2\)

c) Ta có: \(x^3+2x^2+3x+2\)

\(=x^3+x^2+x^2+x+2x+2\)

\(=x^2\left(x+1\right)+x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+2\right)\)

d) Ta có: \(x^2+2xy+y^2+2x+2y-3\)

\(=\left(x+y\right)^2+2\left(x+y\right)-3\)

\(=\left(x+y\right)^2+3\left(x+y\right)-\left(x+y\right)-3\)

\(=\left(x+y\right)\left(x+y+3\right)-\left(x+y+3\right)\)

\(=\left(x+y+3\right)\left(x+y-1\right)\)

5 tháng 11 2017

a) Cách 1.

Ta có 2xy + 3z + 6y + xz = (2xy + xz) + (3z + 6y)

= x(2 y + z)+3(z + 2 y) = (z + 2y)(x + 3).

Cách 2.

Ta có 2xy + 3z + 6y + xz = (2x1/ + 6y) + (3z + xz)

= 2y(x + 3) + z(3 + x) = (z + 2y)(x + 3).

b) Biến đổi được a 4   -   9 rt 3   +   a 2 -9a = (a- 9)a( a 2  +1).

c) Biến đổi được 3 x 2  + 5y - 3xy + (-5x) = (x - y)(3x - 5).

d) Biến đổi được  x 2  - (a + b)x + ab = (x- a)(x - b).

e) Ta có 4 x 2 - 4xy + y 2   –   9 t 2 =  ( 2 x   -   y ) 2   -   ( 3 t ) 2

= (2x - y - 3t )(2x - y + 31).

g) Ta có  x 3   -   3 x 2 y   +   3 xy 2   -   y 3   -   z 3

= ( x   -   y ) 3   -   z 3 = (x - y - z)( x 2   +   y 2   +   z 2  - 2xy + xz - yz).

h) Ta có x 2   -   y 2 + 8x + 6y+ 7 = ( x 2  +8x + 16) - ( y 2  - 6y+ 9)

= ( x   +   4 ) 2   - ( y - 3 ) 2  =(x-y + 7)(x + y + l).

29 tháng 8 2021

c) \(16-x^2+2xy-y^2=\left(4-x+y\right)\left(4+x-y\right)\)

d) \(\left(x-1\right)^2-4\left(2x-3\right)^2=\left(5-3x\right)\left(5x-7\right)\)

e) \(x^3-3x^2+3x-1=\left(x-1\right)^3\)

e) \(x^2-7=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)