Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4b^2c^2-\left(b^2+c^2-a^2\right)^2\)
\(=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)\)
\(=\left[a^2-\left(b^2-2bc+c^2\right)\right].\left[\left(b^2+2bc+c^2\right)-a^2\right]\)
\(=\left[a^2-\left(b-c\right)^2\right].\left[\left(b+c\right)^2-a^2\right]\)
\(=\left(a-b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(b+c+a\right)\)
\(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\)
\(=\left[\left(a-b\right)^2-3^2\right].\left[\left(a+b\right)^2-1\right]\)
\(=\left(a-b-3\right)\left(a-b+3\right)\left(a+b-1\right)\left(a+b+1\right)\)
Tham khảo nhé~
\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
\(=\left(a+b\right)\left(a^2-b^2\right)-\left(b+c\right)\left[c^2-a^2+a^2-b^2\right]+\left(c+a\right)\left(c^2-a^2\right)\)
\(=\left(a+b\right)\left(a^2-b^2\right)-\left(b+c\right)\left(c^2-a^2\right)-\left(b+c\right)\left(a^2-b^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
\(=\left(a^2-b^2\right)\left(a+b-b-c\right)+\left(c^2-a^2\right)\left(c+a-b-c\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a-c\right)+\left(c-a\right)\left(c+a\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(a+b-c-a\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)
Chúc bạn học tốt.
a) \(4x^3\left(x^2+x\right)-\left(x^2+x\right)=\left(x^2+x\right)\left(4x^3-1\right)\)
b)\(\left(1-2a+a^2\right)-\left(b^2-2bc+c^2\right)=\left(1-a\right)^2-\left(b-c\right)^2=\)\(\left(1-a+b-c\right)\left(1-a-b+c\right)\)
lm tiếp câu c
c) \(C=\left(x-7\right)\left(x-5\right)\left(x-4\right)\left(x-2\right)-72\)
\(=\left[\left(x-7\right)\left(x-2\right)\right]\left[\left(x-5\right)\left(x-4\right)\right]-72\)
\(=\left(x^2-9x+14\right)\left(x^2-9x+20\right)-72\)
Đặt \(x^2-9x+17=a\) ta có:
\(C=\left(a-3\right)\left(a+3\right)-72\)
\(=a^2-9-72\)
\(=a^2-81=\left(a-9\right)\left(a+9\right)\)
Thay trở lại ta được: \(C=\left(x^2-9x++8\right)\left(x^2-9x+26\right)\)
\(a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)\)
\(=a^4\left(b^2-c^2\right)+b^4\left(c^2-b^2+b^2-a^2\right)+c^4\left(a^2-b^2\right)\)
\(=a^4\left(b^2-c^2\right)+b^4\left(c^2-b^2\right)+b^4\left(b^2-a^2\right)+c^4\left(a^2-b^2\right)\)
\(=a^4\left(b^2-c^2\right)-b^4\left(b^2-c^2\right)-b^4\left(a^2-b^2\right)+c^4\left(a^2-b^2\right)\)
\(=\left(a^4-b^4\right)\left(b^2-c^2\right)+\left(c^4-b^4\right)\left(a^2-b^2\right)\)
\(=\left(a^2-b^2\right)\left(a^2+b^2\right)\left(b^2-c^2\right)-\left(b^2-c^2\right)\left(c^2+b^2\right)\left(a^2-b^2\right)\)
\(=\left(a^2-b^2\right)\left(b^2-c^2\right)\left(a^2+b^2-c^2-b^2\right)\)
\(=\left(a^2-b^2\right)\left(b^2-c^2\right)\left(a^2-c^2\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(b-c\right)\left(b+c\right)\left(a-c\right)\left(a+c\right)\)