Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(3x-5\right)\left(2x+3\right)-\left(2x-3\right)\left(3x+7\right)-2x\left(x-4\right)\)
\(=\left(6x^2-x-15\right)-\left(6x^2+5x-21\right)-\left(2x^2-8x\right)\)
\(=6x^2-x-15-6x^2-5x+21-2x^2+8x\)
\(=-2x^2+2x+6\)
\(=-2\left(x^2-x-3\right)\)
b) \(\left(x^2+2\right)^2-\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\)
\(=\left(x^2+2\right)^2-\left(x^2-4\right)\left(x^2+4\right)\)
\(=\left(x^2+2\right)^2-\left(x^4-16\right)\)
\(=\left(x^4+4x^2+4\right)-\left(x^4-16\right)\)
\(=x^4+4x^2+4-x^4+16\)
\(=4x^2+20\)
\(=4\left(x^2+5\right)\)
c) \(\left(2x-y\right)^2-2\left(x+3y\right)^2-\left(1+3x\right)\left(3x-1\right)\)
\(=\left(4x^2-4xy+y^2\right)-2\left(x^2+6xy+9y^2\right)-\left(9x^2-1\right)\)
\(=4x^2-4xy+y^2-2x^2-16xy-18y^2-9x^2+1\)
\(=-7x^2-20xy-17y^2+1\)
d) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)
\(=\left(x^6-3x^4+3x^2-1\right)-\left(x^6-1\right)\)
\(=x^6-3x^4+3x^2-1-x^6+1\)
\(=-3x^4+3x^2\)
\(=-3x^2\left(x^2-1\right)\)
\(=-3x^2\left(x-1\right)\left(x+1\right)\)
e) \(\left(2x-1\right)^2-2\left(4x^2-1\right)+\left(2x+1\right)^2\)
\(=\left(2x-1\right)^2-2\left(2x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)
\(=\left[\left(2x-1\right)-\left(2x+1\right)\right]^2\)
\(=\left(2x-1-2x-1\right)^2\)
\(=\left(-2\right)^2=4\)
g) \(\left(x-y+z\right)^2+\left(y-z\right)^2-2\left(x-y+z\right)\left(z-y\right)\)
\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)
\(=\left(x-y+z+y+z\right)^2\)
\(=\left(x+2z\right)^2\)
h) \(\left(2x+3\right)^2+\left(2x+5\right)^2-\left(4x+6\right)\left(2x+5\right)\)
\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\)
\(=\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\)
\(=\left(2x+3-2x-5\right)^2\)
\(=\left(-2\right)^2=4\)
i) \(5x^2-\dfrac{10x^3+15x^2-5x}{-5x}-3\left(x+1\right)\)
\(=5x^2-\dfrac{-5x\left(-2x^2-3x+1\right)}{-5x}-3\left(x+1\right)\)
\(=5x^2-\left(-2x^2-3x+1\right)-3\left(x+1\right)\)
\(=5x^2+2x^2+3x-1-3x-3\)
\(=7x^2-4\)
a, 3x - 3y = 3( x- y )
b, x2 - x =x(x - 1)
c, 3(x - y) - 5x(y - x)
= 3(x - y) + 5x(x - y)
= ( x - y)(3 + 5x)
d, x(y - 1) - y(y - 1)
= (x - y)(y - 1)
e, 10x(x - y)-8y( y - x)
= 10x(x - y) + 8y(x - y)
= (10y + 8x)(x - y)
f, 2x2 +5x3 +xy
= x(2x + 5x2 + y)
g, 14x2y - 21xy2 +28x2y2
= 7xy(2x - 3y + 4xy)
h, x2 - 3x + 2
= x2 - x - 2x + 2
= x(x - 1)- 2(x - 1)
= (x - 2)(x - 1)
i, x2 - x - 6
x2 + 2x - 3x - 6
x(x + 2) - 3(x + 2)
(x + 2)(x - 3)
k, x2 + 5x+6
= x2 - x + 6x + 6
=x(x - 1) + 6(x + 1)
= x(x - 1) - 6(x - 1)
= (x - 6)(x - 1)
l,x2 - 4x + 3
= x2 - x - 3x + 3
= x(x - 1) - 3(x - 1)
= (x - 3)(x - 1)
m, x2 + 5x +4
= x2 + x + 4x + 4
= x(x + 1) + 4(x + 1)
= (x + 4)(x + 1)
A=\(x^3-2x^2+x\)
=x.(x2-2x+1)
=x(x-1)2
B=\(2x^2+4x+2-2y^2\)
=\(2\left(x^2+2x+1-y^2\right)\)
=\(2.\left[\left(x+1\right)^1-y^2\right]\)
=\(2\left(x+1-y\right)\left(x+1+y\right)\)
C=\(2xy-x^2-y^2+16\)
=\(-\left(-2xy+x^2+y^2-16\right)\)
=\(-\left[\left(x-y\right)^2-4^2\right]\)
=-(x-y-4)(x-y+4)
D=\(x^3+2x^2y+xy^2-9x\)
=\(x\left(x^2+2xy-y^2-9\right)\)
=\(x.\left[\left(x-y\right)^2-3^2\right]\)
=x.(x-y-3)(x-y+3)
E=\(2x-2y-x^2+2xy-y^2\)
\(=\left(2x-2y\right)-\left(x^2-2xy+y^2\right)\)
=\(2\left(x-y\right)-\left(x-y\right)\left(x-y\right)\)
=(x-y)(2x-2y-x+y)
=(x-y)(x+y)
e, (x-1)(x2 + x + 1)-x(x+2)(x-2) = 5
x(x2 +x + 1 ) - (x2 + x +1 )- [ x (x2 - 4)] = 5
x3 +x2 +x - x2 - x - 1 - x3 +4x = 5
4x - 1 = 5
4x = 6
x =\(\dfrac{3}{2}\)
f, (x-1)3 - (x+3)(x2 - 3x +9 ) +3(x2 - 4) = 2
x - 3x2 +3x - 1 - [( x3 - 3x2 + 9x) + (3x2 - 9x +27)] = 2
x3 - 3x2 + 3x - 1 -x3 +3x2 -9x - 3x2 +9x - 27 +3x2 - 12 = 2
3x - 1 - 27 - 12 = 2
3x = 42
x = 14
1)\(8x^6-\frac{1}{125}y^3=\left(2x^2\right)^3-\left(\frac{1}{5}y\right)^3\)
Bạn tự lm tiếp.AD HĐT số (7)
2)\(\left(x+4\right)^3-64=\left(x+4\right)^3-4^3\)
AD HĐT số (7).Tự lm tiếp
3)\(x^6+1=\left(x^2\right)^3+1\)
AD HĐT số (7).Tự lm tiếp
4)\(x^9+1=\left(x^3\right)^3+1\)
AD HĐT số (7).Tự lm tiếp
5,\(x^{12}-y^4=\left(x^6\right)^2-\left(y^2\right)^2\)
AD HĐT số (3).Tự lm tiếp
6)\(x^3+6x^2+12x+8=\left(x+2\right)^3\)
AD HĐT số (4)
7)\(x^3-15x^2+75x-125=\left(x-5\right)^3\)
AD HĐT số (5)
8)\(27a^3-54a^2b+36ab^2-8b^3\)
\(=\left(3a\right)^3-3.\left(3a\right)^2.2b+3.3a.\left(2b\right)^2-\left(2b\right)^3\)
\(=\left(3a-2b\right)^3\)
AD HĐT số (5)
a) \(x^2+4x+3=\left(x^2+4x+4\right)-1=\left(x+2\right)^2-1^2=\left(x+1\right)\left(x+3\right)\) (mình sửa lại)
b) \(x^2+8x-9=\left(x^2+8x+16\right)-25=\left(x+4\right)^2-5^2=\left(x-1\right)\left(x+9\right)\)
c) \(3x^2+6x-9=3\left[\left(x^2+2x+1\right)-4\right]=3\left[\left(x+1\right)^2-2^2\right]=3\left(x-1\right)\left(x+3\right)\)
d) \(2x^2+x-3=2x^2-4x+2+5x-5=2\left(x^2-2x+1\right)+5\left(x-1\right)=2\left(x-1\right)^2+5\left(x-1\right)=\left(x-1\right)\left(2x+3\right)\)
a: \(16x^3+0,25yz^3\)
\(=0,25\cdot x^3\cdot64+0,25\cdot yz^3\)
\(=0,25\left(64x^3+yz^3\right)\)
b: \(x^4-4x^3+4x^2\)
\(=x^2\cdot x^2-x^2\cdot4x+x^2\cdot4\)
\(=x^2\left(x^2-4x+4\right)=x^2\left(x-2\right)^2\)
c: \(x^3+x^2y-xy^2-y^3\)
\(=x^2\left(x+y\right)-y^2\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-y^2\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\cdot\left(x+y\right)^2\)
d: \(x^3+x^2+x+1\)
\(=x^2\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+1\right)\)
e: \(x^4-x^2+2x-1\)
\(=x^4-\left(x^2-2x+1\right)\)
\(=x^4-\left(x-1\right)^2\)
\(=\left(x^2-x+1\right)\left(x^2+x-1\right)\)
f: \(2x^2-18\)
\(=2\cdot x^2-2\cdot9\)
\(=2\left(x^2-9\right)=2\left(x-3\right)\left(x+3\right)\)
g: \(x^2+8x+7\)
\(=x^2+x+7x+7\)
\(=x\left(x+1\right)+7\cdot\left(x+1\right)=\left(x+1\right)\left(x+7\right)\)
h: \(x^4y^4+4\)
\(=x^4y^4+4x^2y^2+4-4x^2y^2\)
\(=\left(x^2y^2+2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2y^2+2-2xy\right)\left(x^2y^2+2+2xy\right)\)
i: \(x^4+4y^4\)
\(=x^4+4x^2y^2+4y^4-4x^2y^2\)
\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
k: \(x^2-2x-15\)
\(=x^2-5x+3x-15\)
\(=x\left(x-5\right)+3\left(x-5\right)=\left(x-5\right)\left(x+3\right)\)