Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) ta có : \(x\sqrt{x}+\sqrt{x}-x-1=\sqrt{x}\left(x+1\right)-\left(x+1\right)\)
\(=\left(\sqrt{x}-1\right)\left(x+1\right)\)
2) ta có : \(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)\)
\(=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)
3) ta có : \(x-\sqrt{x}-2=x+\sqrt{x}-2\sqrt{x}-2\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}+1\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\)
4) ta có : \(x-3\sqrt{x}+2=x-\sqrt{x}-2\sqrt{x}+2\)
\(=\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)\)
5) ta có : \(-6x+5\sqrt{x}+1=-6x+6\sqrt{x}-\sqrt{x}+1\)
\(=6\sqrt{x}\left(1-\sqrt{x}\right)+\left(1-\sqrt{x}\right)=\left(6\sqrt{x}+1\right)\left(1-\sqrt{x}\right)\)
6) ta có : \(x+4\sqrt{x}+3=x+\sqrt{x}+3\sqrt{x}+3\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}+1\right)=\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)\)
7) ta có : \(3\sqrt{a}-2a-1=-2a+2\sqrt{a}+\sqrt{a}-1\)
\(=-2\sqrt{a}\left(\sqrt{a}-1\right)+\left(\sqrt{a}-1\right)=\left(1-2\sqrt{a}\right)\left(\sqrt{a}-1\right)\)
8) ta có : \(x+2\sqrt{x-1}=x-1+2\sqrt{x-1}+1\)
\(=\left(\sqrt{x-1}+1\right)^2\)
9) ta có : \(7\sqrt{x}-6x-2=-6x+3\sqrt{x}+4\sqrt{x}-2\)
\(=-3\sqrt{x}\left(2\sqrt{x}-1\right)+2\left(2\sqrt{x}-1\right)=\left(2-3\sqrt{x}\right)\left(2\sqrt{x}-1\right)\)
10) ta có : \(x-5\sqrt{x}+6=x-2\sqrt{x}-3\sqrt{x}+6\)
\(=\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)\)
11) ta có : \(x-2+\sqrt{x^2-4}=\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-2\right)\left(x+2\right)}\)
\(=\sqrt{x-2}\left(\sqrt{x-2}+\sqrt{x+2}\right)\)
a) \(x-2\sqrt{x-1}-4=\left(x-1\right)-2\sqrt{x-1}+1-4\)
\(=\left(\sqrt{x-1}-1\right)^2-4=\left(\sqrt{x-1}-3\right)\left(\sqrt{x-1}+1\right)\)
b) \(x-2\sqrt{x-6}-5-y^2=\left(x-6\right)-2\sqrt{x-6}+1-y^2\)
\(=\left(\sqrt{x-6}-1\right)^2-y^2=\left(\sqrt{x-6}-1+y\right)\left(\sqrt{x-6}-1-y\right)\)
c) \(x-2\sqrt{x-8}-7-a^2=\left(x-8\right)-2\sqrt{x-8}+1-a^2\)
\(=\left(\sqrt{x-8}-1\right)^2-a^2=\left(\sqrt{x-8}+a-1\right)\left(\sqrt{x-8}-a-1\right)\)
a) \(\left(\sqrt{x-1}-3\right)\left(\sqrt{x-1}+1\right)\)
b) \(\left(\sqrt{x-6}-1-y\right)\left(\sqrt{x-6}-1+y\right)\)
c) \(\left(\sqrt{x-8}-1-a\right)\left(\sqrt{x-8}-1+a\right)\)
1/ \(x-6\sqrt{x}-8=\left(\sqrt{x}-3+\sqrt{17}\right)\left(\sqrt{x}-3-\sqrt{17}\right)\)
2/ Bài này làm gì còn phân tích được nữa.
1)
ĐK: \(x\geq 5\)
PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)
2)
ĐK: \(x\geq -1\)
\(\sqrt{x+1}+\sqrt{x+6}=5\)
\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)
\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)
Vì \(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$
\(\Rightarrow x=3\) (thỏa mãn)
Vậy .............
a) x8+x4+1 = (x8+x7+x6) +(-x7-x6-x5)+(x5+x4+x3)+(-x3-x2-x)+(x2+x+1) = (x2+x+1)(x6-x5+x3-x+1)
b) x5+x4+1 = x5 +x4+x3-x3-x2-x+x2+x+1=(x2+x+1)(x3-x+1)
tương tự thì c) và d) cx có nhân tử x2+x+1
e) = x3-x2-5x2+5x+6x+6 = (x-1)(x2-5x+6) = (x-1)(x2-2x-3x+6) = (x-1)(x-2)(x-3)
a) Ta có: \(x^8+x^4+1=\left(x^4\right)^2+2.x^4.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow\) Không phân tích được