K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2017

a)\(x^5-x=x\left(x^4-1\right)=x\left(x^2-1\right)\left(x^2+1\right)=x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)

b)\(3x^2+5x-2=3x^2+6x-x-2=3x\left(x+2\right)-\left(x+2\right)=\left(3x-1\right)\left(x+2\right)\)

c)\(4x^3+14x^2+6x=2x\left(2x^2+7x+3\right)=2x\left(2x^2+6x+x+3\right)\)

\(=2x\left[2x\left(x+3\right)+\left(x+3\right)\right]=2x\left(x+3\right)\left(2x+1\right)\)

\(x^5-x=x\left(x^4-1\right)\)

\(=x\left(x^2-1\right)\left(x^2+1\right)\)

\(=x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)

11 tháng 10 2021

giúp mình với

11 tháng 10 2021

a: \(3x^2-3xy-5x+5y\)

\(=3x\left(x-y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(3x-5\right)\)

c: \(xz+yz-5x-5y\)

\(=z\left(x+y\right)-5\left(x+y\right)\)

\(=\left(x+y\right)\left(z-5\right)\)

a: =3x^2-3x-8x+8=(x-1)(3x-8)

b: =x^2-x-5x+5=(x-1)(x-5)

c: =x^2-6x+2x-12=(x-6)(x+2)

14 tháng 8 2021

\(2x^2-7x+5=\left(2x^2-2x\right)-\left(5x-5\right)=2x\left(x-1\right)-5\left(x-1\right)=\left(2x-5\right)\left(x-1\right)\)

\(3x^2+5x+2=\left(3x^2+3x\right)+\left(2x+2\right)=3x\left(x+1\right)+2\left(x+1\right)=\left(3x+2\right)\left(x+1\right)\)

a: \(2x^2-7x+5=\left(x-1\right)\left(2x-5\right)\)

b: \(3x^2+5x+2=\left(x+1\right)\left(3x+2\right)\)

26 tháng 7 2021

a, \(x^2-5x+6=x^2+x-6x+6=x\left(x-1\right)-6\left(x-1\right)=\left(x-1\right)\left(x-6\right)\)

b, \(3x^2+9x-30=3\left(x^2+3x-10\right)=3\left(x^2-2x+5x-10\right)\)

\(=3\left[x\left(x-2\right)+5\left(x-2\right)\right]=3\left(x-2\right)\left(x+5\right)\)

c, \(x^2+7x+10=x^2+2x+5x+10=x\left(x+2\right)+5\left(x+2\right)=\left(x+2\right)\left(x+5\right)\)

26 tháng 7 2021

a) x2 - 5x + 6 = (x2-2x)-(3x-6)=x(x-2)-3(x-2)=(x-3)(x-2)

b) 3x2 + 9x -30= 3(x2+3x-10) = 3((x2+5x)-(2x+10)) = 3(x(x+5)-2(x+5)) = 3(x-2)(x+5)

c) x2 + 7x + 10 =( x2+5x)+(2x+10)=x(x+5)+2(x+5)=(x+2)(x+5)

a: \(6x^2-3xy\)

\(=3x\cdot2x-3x\cdot y\)

=3x(2x-y)

b: \(x^2-y^2-6x+9\)

\(=\left(x^2-6x+9\right)-y^2\)

\(=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)

c: \(x^2+5x-6\)

=\(x^2+6x-x-6\)

=x(x+6)-(x+6)

=(x+6)(x-1)

21 tháng 1

thế em sai hả anh ?

22 tháng 12 2023

a: \(6x^2-3xy\)

\(=3x\cdot2x-3x\cdot y\)

\(=3x\left(2x-y\right)\)

b: \(x^2-y^2-6x+9\)

\(=\left(x^2-6x+9\right)-y^2\)

\(=\left(x-3\right)^2-y^2\)

\(=\left(x-3-y\right)\left(x-3+y\right)\)

c: \(x^2+5x-6\)

\(=x^2+6x-x-6\)

\(=x\left(x+6\right)-\left(x+6\right)\)

\(=\left(x+6\right)\left(x-1\right)\)

22 tháng 12 2023

Nếu tổng các hệ số trong đa thức bằng 0 thì đây thức có một nghiệm là 1, đa thức trên sẽ có một nghiệm là 1 nên đa thức có thể phân tích thành (x - 1) x a

Nếu tổng các hệ số bậc chẵn bằng tổng hệ số bậc lẻ thì đa thức có một nghiệm là -1

Ví dụ đa thức -x² + 5x + 6 có tổng hệ số bằng chẵn bằng -1 + 6 = 5 bằng hệ số bậc lẻ, đa thức trên sẽ có một nghiệm là -1 nên đa thức có thể phân tích thành (a + 1) x a

a. 6x² - 3xy = 3x x 2x - y

b. x^2 - y^2 - 6x + 9 = x² - 6x + 9 - y²( x - 3)^2 - y ^2 = x - 3 - y x  (x - 3) + y

c. x² + 5x - 6 = x² - x + 6x - 6 = (x - 1) x (x + 6)

a: =2(x-2)+y(x-2)

=(x-2)(2+y)

b: \(=\left(x+y\right)^2-4=\left(x+y+2\right)\left(x+y-2\right)\)

c: =(x-7)(x+2)

6 tháng 1 2022

a.

2x - 4 + xy - 2y

= 2(x-2) +y(x-2)

= (x-2)(y+2)

c.

x^2 - 5x - 14

= x^2 + 2x - 7x - 14

= x(x+2) - 7(x+2)

= (x-7)(x+2)

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

a. $6x^2-11x=x(6x-11)$
b. $x^7+x^5+1=(x^7-x)+(x^5-x^2)+x+x^2+1$

$=x(x^6-1)+x^2(x^3-1)+(x^2+x+1)$
$=x(x^3-1)(x^3+1)+x^2(x^3-1)+(x^2+x+1)$
$=(x^3-1)(x^4+x+x^2)+(x^2+x+1)$

$=(x-1)(x^2+x+1)(x^4+x^2+x)+(x^2+x+1)$
$=(x^2+x+1)[(x-1)(x^4+x^2+x)+1]$

$=(x^2+x+1)(x^5-x^4+x^3-x+1)$

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

c.

$x^8+x^4+1=(x^4)^2+2.x^4+1-x^4$

$=(x^4+1)^2-(x^2)^2$

$=(x^4+1-x^2)(x^4+1+x^2)$

$=(x^4+1-x^2)(x^4+2x^2+1-x^2)$

$=(x^4-x^2+1)[(x^2+1)^2-x^2]$

$=(x^4-x^2+1)(x^2+1-x)(x^2+1+x)$

d.

$x^3-5x+8-4=x^3-5x+4$

$=x^3-x^2+x^2-x-(4x-4)$

$=x^2(x-1)+x(x-1)-4(x-1)=(x-1)(x^2+x-4)$

e.

$x^5+x^4+1=(x^5-x^2)+(x^4-x)+x^2+x+1$

$=x^2(x^3-1)+x(x^3-1)+x^2+x+1$

$=(x^3-1)(x^2+x)+(x^2+x+1)$
$=(x-1)(x^2+x+1)(x^2+x)+(x^2+x+1)$

$=(x^2+x+1)[(x-1)(x^2+x)+1]$

$=(x^2+x+1)(x^3-x+1)$

 

 

1 tháng 11 2021

1.

a) \(2x^4-4x^3+2x^2\)

\(=2x^2\left(x^2-2x+1\right)\)

\(=2x^2\left(x-1\right)^2\)

b) \(2x^2-2xy+5x-5y\)

\(=\left(2x^2-2xy\right)+\left(5x-5y\right)\)

\(=2x\left(x-y\right)+5\left(x-y\right)\)

\(=\left(x-y\right)\cdot\left(2x+5\right)\)

1 tháng 11 2021

2 . 

a,

\(4x\left(x-3\right)-x+3=0\)

\(4x\left(x-3\right)-\left(x-3\right)=0\)

\(\left(x-3\right)\left(4x-1\right)=0\)

\(\left[{}\begin{matrix}x-3=0\\4x-1=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=3\\4x=1\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=3\\x=\dfrac{1}{4}\end{matrix}\right.\)

vậy \(x\in\left\{3;\dfrac{1}{4}\right\}\)

b, 

\(\)\(\left(2x-3\right)^2-\left(x+1\right)^2=0\)

\(\left(2x-3-x-1\right)\left(2x-3+x+1\right)\) = 0

\(\left(x-4\right)\left(3x-2\right)=0\)

\(\left[{}\begin{matrix}x-4=0\\3x-2=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=4\\3x=2\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=4\\x=\dfrac{2}{3}\end{matrix}\right.\)

vậy \(x\in\left\{4;\dfrac{2}{3}\right\}\)