K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

a) Ta có : x2 - 4x + 3

= x2 - x - 3x + 3

= x(x - 1) - (3x - 3) 

= x(x - 1) - 3(x - 1)

= (x - 1) (x - 3) 

24 tháng 6 2017

a) \(x^2-4x+3\)

\(=x^2-x-3x+3\)

\(=x\left(x-1\right)-3\left(x-1\right)\)

\(=\left(x-1\right)\left(x-3\right)\)

b) \(x^2+5x+4\)

\(=x^2+x+4x+4\)

\(=x\left(x+1\right)+4\left(x+1\right)\)

\(=\left(x+1\right)\left(x+4\right)\)

c) \(x^2-x-6\)

\(=x^2-3x+2x-6\)

\(=x\left(x-3\right)+2\left(x-3\right)\)

\(=\left(x+2\right)\left(x-3\right)\)

d) \(x^4+1997x^2+1996x+1997\)

\(=x^4+x^2+1996x^2+1996x+1996+1\)

\(=\left(x^4+x^2+1\right)+\left(1996x^2+1996x+1996\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+1996\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+1997\right)\)

e) \(x^2-2001\cdot2002\)( hình như sai sai)

22 tháng 4 2020

d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0

Đặt x2 + 4x + 8 = t ta được:

t2 + 3xt + 2x2 = 0

\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0

\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0

\(\Leftrightarrow\) (t + x)(t + 2x) = 0

Thay t = x2 + 4x + 8 ta được:

(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0

\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0

\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0

\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0

Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x

\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)

Vậy S = {-4; -2}

Mình giúp bn phần khó thôi!

Chúc bn học tốt!!

22 tháng 4 2020

c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)

\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

⇒x2+x+1+2x2-5=4x-4

⇔3x2-3x=0

⇔3x(x-1)=0

⇔x=0 (TMĐK) hoặc x=1 (loại)

Vậy tập nghiệm của phương trình đã cho là:S={0}

23 tháng 10 2018

Thời gian có hạn copy cái này hộ mình vào google xem nha :

https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi

Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....

Có 500 giải nhanh nha đã có 401 người nhận rồi

OKz

23 tháng 10 2018

thì sao bạn mk ko rảnh bạn nhé

12 tháng 7 2019

a,\(xy+3x-7y-21\)

\(=x\left(y+3\right)-7\left(y+3\right)\)

\(=\left(y+3\right)\left(x-7\right)\)

12 tháng 7 2019

\(b,2xy-15-6x+5y\)

\(=\left(2xy-6x\right)+\left(-15+5y\right)\)

\(=2x\left(y-3\right)-5\left(3-y\right)\)

\(=2x\left(y-3\right)+5\left(y-3\right)\)

\(=\left(y-3\right)\left(2x+5\right)\)

a) 3x2 - 7x + 2

= 3x2 - 6x - x + 2

= (3x2 - 6x) - (x - 2)

= 3x (x - 2) - (x - 2)

= (3x - 1) (x - 2)

20 tháng 8 2018

Bài 14:Tìm x

a,\(x-3=\left(3-x\right)^2\)

\(\Rightarrow\left(x-3\right)-\left(3-x\right)^2=0\)

\(\Rightarrow\left(x-3\right)+\left(x-3\right)^2=0\)

\(\Rightarrow\left(x-3\right)\left(1+x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

b,\(\left(2x-5\right)-\left(5+2x\right)^2=0\)

\(\Rightarrow\left(2x-5\right)+\left(2x-5\right)^2=0\)

\(\Rightarrow\left(2x-5\right)\left(1+2x-5\right)=0\)

\(\Rightarrow\left(2x-5\right)\left(2x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\2x-4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=5\\2x=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=2\end{matrix}\right.\)

30 tháng 3 2020

\(ĐKXĐ:x\ne\pm\frac{3}{2};x\ne1;x\ne0\)

\(A=\left(\frac{2+3x}{2-3x}-\frac{36x^2}{9x^2-4}-\frac{2-3x}{2+3x}\right):\frac{x^2-x}{2x^2-3x^3}\)

\(=\left[\frac{\left(2+3x\right)^2}{\left(2+3x\right)\left(2-3x\right)}+\frac{36x^2}{\left(2-3x\right)\left(2+3x\right)}-\frac{\left(2-3x\right)^2}{\left(2-3x\right)\left(2+3x\right)}\right]:\frac{x\left(x-1\right)}{x^2\left(2-3x\right)}\)

\(=\frac{4+12x+9x^2+36x^2-4+12x-9x^2}{\left(2+3x\right)\left(2-3x\right)}\cdot\frac{x\left(2-3x\right)}{x-1}\)

\(=\frac{36x^2+24x}{\left(2+3x\right)\left(2-3x\right)}\cdot\frac{x\left(2-3x\right)}{x-1}\)

\(=\frac{12x\left(3x+2\right)}{2+3x}\cdot\frac{x}{x-1}\)

\(=\frac{12x^2}{x-1}\)

30 tháng 3 2020

Để A nguyên dương hay \(\frac{12x^2}{x-1}\) nguyên dương

Mà \(12x^2\ge0\Rightarrow x-1>0\Rightarrow x>1\)

Vậy để A nguyên dương thì x là số nguyên dương lớn hơn 1.

16 tháng 11 2017

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

55555555555555555

666666666666666666666666666

88888888888888888888

4 tháng 4 2020

a) (x^5 + 4x^3 - 6x^2) : 4x^2

= (x^5 : 4x^2) + (4x^3 : 4x^2) - (6x^2 : 4x^2)

= 1/4x^3 + x + 3/2

b) x(2x^2 - 3) - x^2(5x + 1) + x^2

= 2x^3 - 3x - 5x^3 - x^2 + x^2

= -3x^3 - 3x

c) (x - 2)^2 - (x - 1)(x + 1) - x(1 - x)

= x^2 - 4x + 4 - x^2 + 1 - x + x^2

<=> x^2 - 5x + 5

d) 1/2x^2(6x - 3) - x(x^2 + 1/2) + 1/2(x + 4)

\(\frac{x^2}{2}\left(6x-3\right)-x\left(x^2+\frac{1}{2}\right)+\frac{x+4}{2}\)

\(\frac{x^2\left(6x-3\right)}{2}-x\left(x^2+\frac{1}{2}\right)+\frac{x+4}{2}\)

\(-x\left(x^2+\frac{1}{2}\right)+\frac{x^2\left(6x-3\right)+x+4}{2}\)

\(\frac{4x^3-3x^2+4}{2}\)