K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2018

a) \(A=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+1\)

\(A=\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]+1\)

\(A=\left(x^2-5x+4\right)\left(x^2-5x+6\right)+1\)

Đặt \(a=x^2-5x+5\)

\(\Leftrightarrow A=\left(a-1\right)\left(a+1\right)+1\)

\(\Leftrightarrow A=a^2-1^2+1\)

\(\Leftrightarrow A=a^2\)

Thay \(a=x^2-5x+5\)vào A ta có :

\(A=\left(x^2-5x+5\right)^2\)

b) \(B=\left(x^2+3x+2\right)\left(x^2+7x+12\right)+1\)

\(B=\left(x^2+x+2x+2\right)\left(x^2+3x+4x+12\right)+1\)

\(B=\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x+3\right)+4\left(x+3\right)\right]+1\)

\(B=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

Làm tương tự câu a)

c) \(12x^2-3xy-8xz+2yz\)

\(=3x\left(4x-y\right)-2z\left(4x-y\right)\)

\(=\left(4x-y\right)\left(3x-2z\right)\)

31 tháng 10 2018

a, \(12x^2-3xy-8xz+2yz=3x\left(4x-y\right)-2z\left(4x-y\right)=\left(4x-y\right)\left(3x-2z\right)\)

14 tháng 11 2022

b: =(x^2+x)^2+3(x^2+x)+2-12

=(x^2+x)^2+3(x^2+x)-10

=(x^2+x+5)(x^2+x-2)

=(x^2+x+5)(x+2)(x-1)

 

17 tháng 3 2020

a, b, c, bằng cái mả bố nhà mày.

2 tháng 9 2018

\(A=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-20\)

\(=\left(x^2+5x+4\right)\cdot\left(x^2+5x+6\right)-20\)

Đặt:   \(x^2+5x+5=a\)Khi đó ta có:

\(A=\left(a-1\right)\left(a+1\right)-20=a^2-21=\left(a-\sqrt{21}\right)\left(a+\sqrt{21}\right)\)

tự thay trở lại

21 tháng 6 2016

Đây là một dạng phân tích thừa số nguyên tố khá quen, cô sẽ hướng dẫn e nhé :) Ta cần ghép các hạng tử để xuất hiện các thành phần chứa biến giống nhau.

\(A=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4=\left(4x+1\right)\left(3x+2\right)\left(12x-1\right)\left(x+1\right)-4\)

\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)

Đặt \(12x^2+11x+2=t\Rightarrow A=t\left(t-3\right)-4=t^2-3t-4=\left(t-4\right)\left(t+1\right)\)

Quay lại biến x ta có: \(A=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)

Câu sau tương tự nhé :)

21 tháng 7 2016

Ta có :  \(M=\left(x^2+3x+2\right)\left(x^2+7x+12\right)+1=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left[\left(x+1\right)\left(x+4\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]+1=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(t=x^2+5x+5\) \(\Rightarrow M=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)

Vậy \(M=\left(x^2+5x+5\right)^2\)

4 tháng 8 2017

Mình sửa: Bài 1
2)x2+3x-15

20 tháng 5 2018

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)

Bài 1

a, x2 + 4x + 3

24 tháng 8 2019

a) \(x^2+4x+3\)

\(=x^2+3x+x+3\)

\(=x\left(x+3\right)+\left(x+3\right)\)

\(=\left(x+1\right)\left(x+3\right)\)