K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

a.= \(\left(a^2-2ab+b^2\right)-\left(c^2-2cd+d^2\right)\)

=\(\left(a-b\right)^2-\left(c-d\right)^2\)

8 tháng 6 2017

làm giúp mình câu b nhé

28 tháng 10 2015

y(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

28 tháng 10 2015

Monkey D.Luffy copy ở đâu mà hay z

9 tháng 8 2015

b)x(y+z)2+y(z+x)2+z(x+y)2-4xyz

=[x(y+z)2-2xyz]+[y(z+x)2-2xyz]+z(x+y)2

=x(y2+2yz+z2-2yz)+y(x2+z2+2xz-2xz)+z(x+y)2

=x(y2+z2)+y(x2+z2)+z(x+y)2

=xy2+xz2+x2y+yz2+(xz+yz)(x+y)

=xy(x+y)+z2(x+y)+(xz+yz)(x+y)

=(x+y)(xy+z2+xz+yz)

=(x+y)[x(y+z)+z(y+z)]

=(x+y)(y+z)(x+z)

9 tháng 8 2015

a)x(y2-z2)+y(z2-x2)+z(x2-y2)

=x(y-z)(y+z)+yz2-x2y+x2z-y2z

=(y-z)(xy+xz)-x2(y-z)-yz(y-z)

=(y-z)(xy+xz-x2-yz)

=(y-z)[x(y-x)-z(y-x)]

=(y-z)(y-x)(x-z)

24 tháng 9 2020

a) x3 + x2y - x2z - xyz

= ( x3 + x2y ) - ( x2z + xyz )

= x2( x + y ) + xz( x + y )

= ( x + y )( x2 + xz )

= x( x + y )( x + z )

b) x2 - y2 + 6x + 9

= ( x2 + 6x + 9 ) - y2

= ( x + 3 )2 - y2

= ( x - y + 3 )( x + y + 3 )

c) x2 - 4xy - x + 2y + 4y2

= ( x2 - 4xy + 4y2 ) - ( x - 2y )

= ( x - 2y )2 - ( x - 2y )

= ( x - 2y )( x - 2y - 1 )

d) 18x3 - 12x2 + 3x - 2

= ( 18x3 - 12x2 ) + ( 3x - 2 )

= 6x2( 3x - 2 ) + ( 3x - 2 )

= ( 3x - 2 )( 6x2 + 1 )

e) a2 + 2ab + b2 - c2 + 2cd - d2

= ( a2 + 2ab + b2 ) - ( c2 - 2cd + d2 ) 

= ( a + b )2 - ( c - d )2

= ( a + b - c + d )( a + b + c - d )

f) xz - yz - x2 + 2xy - y2

= z( x - y ) - ( x2 - 2xy + y2 )

= z( x - y ) - ( x - y )2

= ( x - y )( z - x + y )

24 tháng 9 2020

a) x3 + x2y - x2z - xyz

= ( x3 + x2y ) - ( x2z + xyz )

= x2( x + y ) + xz( x + y )

= ( x + y )( x2 + xz )

= x( x + y )( x + z )

b) x2 - y2 + 6x + 9

= ( x2 + 6x + 9 ) - y2

= ( x + 3 )2 - y2

= ( x - y + 3 )( x + y + 3 )

c) x2 - 4xy - x + 2y + 4y2

= ( x2 - 4xy + 4y2 ) - ( x - 2y )

= ( x - 2y )2 - ( x - 2y )

= ( x - 2y )( x - 2y - 1 )

d) 18x3 - 12x2 + 3x - 2

= ( 18x3 - 12x2 ) + ( 3x - 2 )

= 6x2( 3x - 2 ) + ( 3x - 2 )

= ( 3x - 2 )( 6x2 + 1 )

e) a2 + 2ab + b2 - c2 + 2cd - d2

= ( a2 + 2ab + b2 ) - ( c2 - 2cd + d2 ) 

= ( a + b )2 - ( c - d )2

= ( a + b - c + d )( a + b + c - d )

f) xz - yz - x2 + 2xy - y2

= z( x - y ) - ( x2 - 2xy + y2 )

= z( x - y ) - ( x - y )2

= ( x - y )( z - x + y )

16 tháng 10 2017

\(A=x^2y^3-x^3y^2+y^2z^3-y^3z^2-z^3x^2+x^3z^2\)

\(A=\left(x^2y^3-x^2z^3\right)+\left(x^3z^2-x^3y^2\right)+\left(y^2z^3-y^3z^2\right)\)

\(A=x^2\left(y^3-z^3\right)-x^3\left(y^2-z^2\right)-y^2z^2\left(y-z\right)\)

\(A=\left(y-z\right)\left(x^2y^2+x^2yz+x^2z^2-x^3y-x^3z-y^2z^2\right)\)

\(A=\left(y-z\right)\left[\left(x^2y^2-x^3y\right)+\left(x^2yz-x^3z\right)+\left(x^2z^2-y^2z^2\right)\right]\)

\(A=\left(y-z\right)\left[x^2y\left(y-x\right)+x^2z\left(y-x\right)-z^2\left(y^2-x^2\right)\right]\)

\(A=\left(y-z\right)\left(y-x\right)\left(x^2y+x^2z-z^2y-z^2x\right)\)

\(A=\left(y-z\right)\left(y-x\right)\left[y\left(x^2-z^2\right)+xz\left(x-z\right)\right]\)

\(A=\left(y-z\right)\left(y-x\right)\left(x-z\right)\left(xy+yz+zx\right)\)

\(A=\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(xy+yz+zx\right)\)

21 tháng 8 2021

\(A=x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)

\(=x\left(y-z\right)\left(y+z\right)+yz^2-yx^2+zx^2-zy^2\)

\(=\left(y-z\right)\left[x.\left(y+z\right)\right]-x^2\left(y-z\right)-yz\left(y-z\right)\)

\(=\left(y-z\right)\left(xy+xz\right)-x^2\left(y-z\right)-yz\left(y-z\right)\)

\(=\left(y-z\right)\left(xy+xz-x^2-yz\right)\)

\(=\left(y-z\right)\left[\left(xy-x^2\right)+\left(xz-yz\right)\right]\)

\(=\left(y-z\right)\left[x\left(y-x\right)-z\left(y-x\right)\right]\)

\(=\left(y-z\right)\left(y-x\right)\left(x-z\right)\)

9 tháng 6 2015

\(x\left(y^2-z^2\right)+z\left(x^2-y^2\right)+y\left(z^2-x^2\right)\)

\(=x\left(y^2-z^2\right)-\left(y^2-z^2+z^2-x^2\right)z+y\left(z^2-x^2\right)\)

\(=x\left(y^2-z^2\right)-z\left(y^2-z^2\right)-z\left(z^2-x^2\right)+y\left(z^2-x^2\right)\)

\(=\left(y^2-z^2\right)\left(x-z\right)+\left(z^2-x^2\right)\left(y-z\right)\)

\(=\left(y-z\right)\left(z-x\right)\left(-\left(y+z\right)+z+x\right)\)

\(\left(y-z\right)\left(z-x\right)\left(x-y\right)\)