K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2019

a)\(a^2+6a+8-b^2-2b=\left(a+3\right)^2-\left(b+1\right)^2=\left(a+3+b+1\right)\left(a+3-b-1\right)\)

\(=\left(a+b+4\right)\left(a-b+2\right)\)

b)\(a^2+6ax+8x^2-b^2-2bx\)

\(=\left(a+3x\right)^2-\left(b+x\right)^2\)

\(=\left(a+3x-b-x\right)\left(a+3x+b+x\right)=\left(a-b+2x\right)\left(a+b+4x\right)\)

12 tháng 10 2021

\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)

28 tháng 11 2021
Lol .ngudoots
15 tháng 9 2016

4a2b2 + 36a2b3 + 6ab4

= 2ab2(2a + 18ab + 3b2)

4a2b3 - 6a3b2

= 2a2b2(2b - 3a)

15 tháng 9 2016

con dc thầy tick 

thêm GP 

=))

15 tháng 9 2016

a, 4a^2b^3 - 6a^3b^2 = 2a^2b^2(2b - 3a)

b, 5(a + b) +x( a + b ) = ( 5 + x )( a + b )

c, (a - b)^2 - ( b - a ) = ( a - b )^2 + ( a - b ) = (a - b) ( a - b + 1)

17 tháng 10 2016

a) \(9\left(a+b\right)^2-4\left(a-2b\right)^2\)

\(=\left(3a+3b\right)^2-\left(2a-4b\right)^2\)

\(=\left(3a+3b-2a+4b\right)\left(3a+3b+2a-4b\right)\)

\(=\left(a+7b\right)\left(5a-b\right)\)

b) \(9x^6-12x^7+4x^8\)

\(=x^6\left(9-12x+4x^2\right)\)

\(=x^6\left(2x-3\right)^2\)

c) \(8x^6-27y^3\)

\(=\left(2x^2\right)^3-\left(3y\right)^3\)

\(=\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)

d) \(\frac{1}{64}x^6-125y^3\)

\(=\left(\frac{1}{4}x^2\right)^3-\left(5y\right)^3\)

\(=\left(\frac{1}{4}x^2-5y\right)\left(\frac{1}{16}x^4+\frac{5}{6}xy+25y^2\right)\)

26 tháng 10 2016

a,(b-a)^2+(a-b)*(3a-2b)-a^2+b^2

=(a-b)^2+(a-b)*(3a-2b)-(a^2-b^2)

=(a-b)^2+(3a-2b)-(a-b)*(a+b)

=(a-b)*(a-b+3a-2b-a-b)

=(a-b)*(3a-4b)

26 tháng 10 2016

b, Đặt x^2-2x+4=a=>x^2-2x+3=a-1

x^2-2x+5=a+1

=>phương trình ban đàu sẽ thành:

(a+1)*(a-1)=8

<=>a^2-1=8

<=>a^2=9

<=>a=3 hoặc a=-3

quay về biến cũ ta có

TH1a=3=>x^2-2x+4=3

<=>x^2-2x+1=0

<=>(x-1)^2=0

<=>x-1=0

<=>x=1

TH2 a=-3=>x^2-2x+4=-3

=>(x^2-2x+1)+6=0

<=>(x-1)^2+6=0

do (x-1)^2>=0 với mọi x=>(x-1)^2+6>0 với mọi x

=> phương trình vô nghiệm

Vậy phương trình có 1 nghiệm là x=1

16 tháng 10 2016

a,

=\(\left(a^2\right)^2-\left(2b\right)^2\)

=\(\left(a^2-2b\right)\left(a^2+2b\right)\)

\(\left(\left(a-\sqrt{2b}\right)\left(a+\sqrt{2b}\right)\right)\left(a^2+2b\right)\)

c, 

=\(4x^4+20x^2+25\)

=\(\left(2x^2\right)^2+2.2x^2.5+5^2\)

=\(\left(2x^2+5\right)^2\)

d,

=\(8x^6-27y^3\)

\(\left(2x^2\right)^3-\left(3y\right)^3\)

\(\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)

Câu b đề ghi ko rõ lắm

18 tháng 10 2018

\(\left(a^2-b^2\right)+\left(a^3+b^3\right)-a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left(a-b\right)+\left(a+b\right)\left(a^2-ab+b^2\right)-a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left(a-b+a^2+b^2-ab-a^2b^2\right)\)

\(=\left(a+b\right)\left[b^2\left(1-a^2\right)+a\left(1+a\right)-b.\left(1+a\right)\right]\)

\(=\left(a+b\right)\left(a+1\right)\left(b^2+a-b\right)\)