Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,4x^2-y^2-1-4x\)
\(\Rightarrow\left(4x^2+4x+1\right)-y^2\)
\(=\left(2x+1\right)^2-y^2=\left(2x+1-y\right)\left(2x+1+y\right)\)
\(b,6x^2-7x-20=6x^2-15x+8x-20\)
\(=\left(6x^2-15x\right)+\left(8x-20\right)\)
\(=3x\left(2x-5\right)+4\left(2x-5\right)\)
\(=\left(3x+4\right)\left(2x-5\right)\)
Đổi dấu – (4yx2 + yz2)(z – y2) = (4yx2 + yz2)( y2 – z), ta có thừa số
(y2 – z) chung:
C = (y2 – z)(2x2y – yz) – (4yx2 + yz2)(z – y2) + 6x2z(y2 – z)
= (y2 – z)(2x2y – yz) + (4yx2 + yz2)( y2 – z) + 6x2z(y2 – z)
= (y2 – z)[( 2x2y – yz ) + (4yx2 + yz2) + 6x2z]
= (y2 – z)[ 2x2y + 4yx2 + 6x2z]
= (y2 – z)[ 2xy2 + 4yx2 + 6x2z]
= (y2 – z)[ 2x2(y + 2y + 3z)]
= (y2 – z)[ 2x2(3y + 3z)]
= (y2 – z) 2x2 .3(y + z)
= 6x2(y2 – z)(y + z).
a) 7x2 - 4x
= x ( 7x - 4 )
b) 5x2 - 2x + 10 xy - 4y
= x ( 5x - 2 ) + 2y ( 5x - 2 )
= ( x + 2y ) ( 5x - 2 )
Ta nhân thấy nghiệm của f(x) nếu có thì x = , chỉ có f(2) = 0 nên x = 2 là nghiệm của f(x) nên f(x) có một nhân tử là x – 2. Do đó ta tách f(x) thành các nhóm có xuất hiện một nhân tử là x – 2
Cách 1:
x3 – x2 – 4 =(x3-2x2)+(x2-2x)+(2x-4)=x2(x-2)+x(x-2)+2(x-2)=(x-2)(x2+x+2)
Cách 2:
(x-2)[(x2+2x+4)-(x+2)]=(x-2)(x2+x+2)
x3-x2-4=x3-8-x2+4=(x3-8)-(x2-4)=(x-2)(x2+2x+4)-(x-2)(x+2)
a, 4x3 -12x2 + 9x
=x(4x2 -12x + 9)
=x((2x)2 - 2.3.2x + 32)
=x(2x - 3)2
b,ab + c2 -ac - bc
=(ab - ac) + (c2 - bc)
=a(b - c) + c(c - b)
=a(b - c) - c(b - c)
=(a - c)(b - c)
c,4x2 - y2 + 1 - 4x
=((2x)2 - 2.2x + 1) - y2
=(2x - 1)2 - y2
=(2x - y -1)(2x + y - 1)
d,6x2 - 7x - 20
= -(-6x2 + 7x + 20)
= -(-6x2 + 11x +10 + 10 - 4x)
= -((3x + 2)(-2x + 5) + 10 - 4x)
= -(3x + 2)(-2x + 5) -10 + 4x
= -(3x + 2)(-2x + 5) - 2(-2x + 5)
= -(-2x + 5)(3x + 4)
\(x^2-y^2+4x+4\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2+y\right)\left(x+2-y\right)\)
\(4x^2-y^2+8\left(y-2\right)\)
\(=4x^2-\left(y^2-8y+16\right)\)
\(=4x^2-\left(y-4\right)^2\)
\(=\left(2x+y-4\right)\left(2x-y+4\right)\)
a,\(=x^3-x^2+5x^2-5x-24x+24\)
\(=x^2\left(x-1\right)+5x\left(x-1\right)-24\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+5x-24\right)\)
\(=\left(x-1\right)\left(x^2-3x+8x-24\right)\)
\(=\left(x-1\right)\left(x\left(x-3\right)+8\left(x-3\right)\right)\)
\(=\left(x-1\right)\left(x-3\right)\left(x+8\right)\)
a)\(3x^2-8x+4\)
\(=3x^2-2x-6x+4\)
\(=x\left(3x-2\right)-2\left(3x-2\right)\)
\(=\left(x-2\right)\left(3x-2\right)\)
b)\(4x^4+81\)
\(=4x^4+36x^2+81-36x^2\)
\(=\left(2x^2+9\right)^2-36x^2\)
\(=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\)
c)\(x^8+98x^4+1\)
\(=\left(x^8+2x^4+1\right)+96x^4\)
\(=\left(x^4+1\right)^2+16x^2\left(x^4+1\right)+64x^4-16x^2\left(x^4+1\right)+32x^4\)
\(=\left(x^4+8x^2+1\right)^2-16x^2\left(x^4-2x^2+1\right)\)
\(=\left(x^4+8x^2+1\right)^2-16x^2\left(x^4-2x^2+1\right)\)
\(=\left(x^4+8x^2+1\right)^2-\left(4x^3-4x\right)^2\)
\(=\left(x^4+4x^3+8x^2-4x+1\right)\left(x^4-4x^3+8x^2+4x+1\right)\)
d)\(x^4+6x^3+7x^2-6x+1\)
\(=x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1\)
\(=x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\)
\(=\left(x^2+3x-1\right)\left(x^2+3x-1\right)\)\(=\left(x^2+3x-1\right)^2\)
\(a,y^4-14y^2+49\)
\(\left(y^2-7\right)^2\)
\(b,x^2-2\)
\(x^2-\left(\sqrt{2}\right)^2=\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\)
\(c,y^2-13\)
\(y^2-\left(\sqrt{13}\right)^2=\left(y-\sqrt{13}\right)\left(y+\sqrt{13}\right)\)
\(d,-4x^2+9y^2\)
\(\left(3y\right)^2-\left(2x\right)^2\)
\(\left(3y-2x\right)\left(3y+2x\right)\)
a: \(7x-14y=7\left(x-2y\right)\)
b: \(4x^2-4x+1=\left(2x-1\right)^2\)