Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn làm bài kiểm tra hả sao nhiều bài tek. Mk làm mất khá nhiều tg luôn đó
Có một số câu thì mình không làm được. Mong bạn thông cảm!!!
1)
ĐK: \(x,y\neq 0\); \(x+y\neq 0\)
\(\frac{x^2-y^2}{6x^2y^2}: \frac{x+y}{12xy}\)
\(=\frac{x^2-y^2}{6x^2y^2}. \frac{12xy}{x+y}=\frac{(x-y)(x+y).12xy}{6x^2y^2(x+y)}=\frac{2(x-y)}{xy}\)
2) ĐK: \(x\neq \frac{\pm 1}{2}; 0; 1\)
\(\frac{5x}{2x+1}: \frac{3x(x-1)}{4x^2-1}=\frac{5x}{2x+1}.\frac{4x^2-1}{3x(x-1)}\)
\(=\frac{5x(2x-1)(2x+1)}{(2x+1).3x(x-1)}=\frac{5(2x-1)}{3(x-1)}\)
3) ĐK: \(x\neq \frac{\pm 1}{2}; 0\)
\(\left(\frac{2x-1}{2x+1}-\frac{2x-1}{2x+1}\right): \frac{4x}{10x-5}=0: \frac{4x}{10x-5}=0\)
4) ĐK: \(x\neq \frac{\pm 1}{3}\)
\(\frac{2}{9x^2+6x+1}-\frac{3x}{9x^2-1}=\frac{2}{(3x+1)^2}-\frac{3x}{(3x-1)(3x+1)}\)
\(=\frac{2(3x-1)}{(3x+1)^2(3x-1)}-\frac{3x(3x+1)}{(3x-1)(3x+1)^2}\)
\(=\frac{6x-2-9x^2-3x}{(3x+1)^2(3x-1)}=\frac{-9x^2+3x-2}{(3x-1)(3x+1)^2}\)
5) ĐK: \(x\neq \pm 1; \frac{-7\pm \sqrt{89}}{4}\)
\(\left(\frac{5}{x^2+2x+1}+\frac{2x}{x^2-1}\right): \frac{2x^2+7x-5}{3x-3}\)
\(=\left(\frac{5}{(x+1)^2}+\frac{2x}{(x-1)(x+1)}\right). \frac{3(x-1)}{2x^2+7x-5}\)
\(=\frac{5(x-1)+2x(x+1)}{(x-1)(x+1)^2}. \frac{3(x-1)}{2x^2+7x-5}=\frac{2x^2+7x-5}{(x+1)^2(x-1)}.\frac{3(x-1)}{2x^2+7x-5}\)
\(=\frac{3}{(x+1)^2}\)
a) Ta có: \(2x^4+3x^3-9x^2-3x+2\)
\(=2x^4-2x^3-2x^2+5x^3-5x^2-5x-2x^2+2x+2\)
\(=2x^2\left(x^2-x-1\right)+5x\left(x^2-x-1\right)-2\left(x^2-x-1\right)\)
\(=\left(x^2-x-1\right)\left(2x^2+5x-2\right)\)
\(a,3x^3y^3-15x^2y^2=3x^2y^2\left(xy-5\right)\)
\(b,5x^3y^2-25x^2y^3+40xy^4\)
\(=5xy^2\left(x^2-5xy+8y^2\right)\)
\(c,-4x^3y^2+6x^2y^2-8x^4y^3\)
\(=-2x^2y^2\left(2x-3+4x^2y\right)\)
\(d,a^3x^2y-\frac{5}{2}a^3x^4+\frac{2}{3}a^4x^2y\)
\(=a^3x^2\left(y-\frac{5}{2}x^2+\frac{2}{3}ay\right)\)
\(e,a\left(x+1\right)-b\left(x+1\right)=\left(x+1\right)\left(a-b\right)\)
\(f,2x\left(x-5y\right)+8y\left(5y-x\right)\)
\(=2x\left(x-5y\right)-8y\left(x-5y\right)=\left(x-5y\right)\left(2x-8y\right)\)
\(g,a\left(x^2+1\right)+b\left(-1-x^2\right)-c\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(a-b-c\right)\)
\(h,9\left(x-y\right)^2-27\left(y-x\right)^3\)
\(=9\left(x-y\right)^2+27\left(x-y\right)^3\)
\(=9\left(x-y\right)^2\left(1+3x-3y\right)\)
a,3x3y3−15x2y2=3x2y2(xy−5)a,3x3y3−15x2y2=3x2y2(xy−5)
b,5x3y2−25x2y3+40xy4b,5x3y2−25x2y3+40xy4
=5xy2(x2−5xy+8y2)=5xy2(x2−5xy+8y2)
c,−4x3y2+6x2y2−8x4y3c,−4x3y2+6x2y2−8x4y3
=−2x2y2(2x−3+4x2y)=−2x2y2(2x−3+4x2y)
d,a3x2y−52a3x4+23a4x2yd,a3x2y−52a3x4+23a4x2y
=a3x2(y−52x2+23ay)=a3x2(y−52x2+23ay)
e,a(x+1)−b(x+1)=(x+1)(a−b)e,a(x+1)−b(x+1)=(x+1)(a−b)
f,2x(x−5y)+8y(5y−x)f,2x(x−5y)+8y(5y−x)
=2x(x−5y)−8y(x−5y)=(x−5y)(2x−8y)=2x(x−5y)−8y(x−5y)=(x−5y)(2x−8y)
g,a(x2+1)+b(−1−x2)−c(x2+1)g,a(x2+1)+b(−1−x2)−c(x2+1)
=(x2+1)(a−b−c)=(x2+1)(a−b−c)
h,9(x−y)2−27(y−x)3h,9(x−y)2−27(y−x)3
=9(x−y)2+27(x−y)3
\(1.\)
\(4x^2-12x+9\)
\(=\left(2x\right)^2-12x+3^2=\left(2x-3\right)^2\)
\(2.\)
\(7x^2-7xy-5x+5y\)
\(=7x\left(x-y\right)-5\left(x-y\right)\)
\(\left(7x-5\right)\left(x-y\right)\)
\(3.\)
\(x^3-9x\)
\(=x\left(x^2-9\right)\)
\(=x\left(x-3\right)\left(x+3\right)\)
\(4.\)
\(5x\left(x-y\right)-15\left(x-y\right)\)
\(=\left(5x-15\right)\left(x-y\right)\)
\(=5\left(x-3\right)\left(x-y\right)\)
\(5.\)
\(2x^2+x\)
\(=2x\left(x+1\right)\)
\(6.\)
\(x^3+27\)
\(=\left(x+3\right)\left(x^2-3x+9\right)\)
\(7.\)
\(2x^2-4xy+2y^2-32\)
\(=2\left(x^2-2xy+y^2-16\right)\)
\(=2\left[\left(x^2-2xy+y^2\right)-16\right]\)
\(=2\left[\left(x-y\right)^2-4^2\right]\)
\(=2\left(x-y+4\right)\left(x-y-4\right)\)
\(8.\)
\(x^3-4x-3x^2+12\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
\(9.\)
\(2x+2y+x^2-y^2\)
\(=2\left(x+y\right)+\left(x-y\right)\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+2\right)\)
\(10.\)
\(x^2y-2xy+y\)
\(=y\left(x^2-2x+1\right)\)
\(=y\left(x-1\right)^2\)
\(11.\)
\(y^2+2y\)
\(=y\left(y+2\right)\)
\(12.\)
\(y^2-x^2-6y-6x\)
\(=\left(y-x\right)\left(y+x\right)-6\left(y+x\right)\)
\(=\left(y+x\right)\left(y-x-6\right)\)
\(13.\)
\(x^3-3x\)
\(=x\left(x^2-3\right)\)
\(=x\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)
\(14.\)
\(2x-xy+2z-yz\)
\(=x\left(2-y\right)+z\left(2-y\right)\)
\(=\left(2-y\right)\left(x+z\right)\)
Xong
e)
$x^3+6x^2+12x+8=x^3+3.2.x^2+3.2^2.x+2^3=(x+2)^3$
f)
$a^3-2a^2-ab^2+2b^2=(a^3-ab^2)-(2a^2-2b^2)$
$=a(a^2-b^2)-2(a^2-b^2)=(a^2-b^2)(a-2)=(a-b)(a+b)(a-2)$
g)
$2a^2x-2a^2-2abx+4ab-2b^2=(2a^2x-2abx)-(2a^2-4ab+2b^2)$
$=2ax(a-b)-2(a-b)^2=2(a-b)(ax-a+b)$
h)
\(x^2-2xy+y^2-25=(x-y)^2-25=(x-y)^2-5^2=(x-y+5)(x-y-5)\)
a)
$4x^2-40x^4+100x^3=4x^2(1-10x^2+25x)$
b)
\(3xy(x-5)-7x+35=3xy(x-5)-7(x-5)\)
\(=(x-5)(3xy-7)\)
c)
\(a^2-am-b^2-bm=(a^2-b^2)-(am+bm)=(a-b)(a+b)-m(a+b)\)
\(=(a+b)(a-b-m)\)
d)
\(x^3-4x-x^2y+4y=(x^3-x^2y)-(4x-4y)\)
\(=x^2(x-y)-4(x-y)=(x^2-4)(x-y)=(x-2)(x+2)(x-y)\)
Bài 2
\(a,x^3+2x^2+x\)
\(=x.\left(x^2+2x+1\right)\)
\(b,xy+y^2-x-y\)
\(=y.\left(x+y\right)-\left(x+y\right)\)
\(=\left(y-1\right).\left(x+y\right)\)
bài 3
\(a,3x.\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=0\\x^2=4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=2,x=-2\end{cases}}\)
vậy x=0,x=2 hay x=-2
\(b,xy+y^2-x-y=0\)
\(y.\left(x+y\right)-\left(x+y\right)=0\)
\(\left(y-1\right).\left(x+y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y-1=0\\x+y=0\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\x=-1\end{cases}}}\)
vậy x=-1, y=1
\(x^2-2x+\left(x-2\right)^2\)
\(=x^2-2x+x^2-4x+4\)
\(=2x^2-6x+4\)
\(=2.\left(x^2-3x+2\right)\)
\(=2.\left[\left(x^2-x\right)-\left(2x-2\right)\right]\)
\(=2.\left[x.\left(x-1\right)-2.\left(x-1\right)\right]\)
\(=2.\left(x-1\right)\left(x-2\right)\)
a.
$4(x+5)(x+6)(x+10)(x+12)=3x^2$
$4[(x+5)(x+12)][(x+6)(x+10)]=3x^2$
$4(x^2+17x+60)(x^2+16x+60)=3x^2$
Đặt $x^2+16x+60=a$ thì pt trở thành:
$4(a+x)a=3x^2$
$4a^2+4ax-3x^2=0$
$4a^2-2ax+6ax-3x^2=0$
$2a(2a-x)+3x(2a-x)=0$
$(2a-x)(2a+3x)=0$
Nếu $2a-x=0\Leftrightarrow 2(x^2+16x+60)-x=0$
$\Leftrightarrow 2x^2+31x+120=0\Rightarrow x=\frac{-15}{2}$ hoặc $x=-8$
Nếu $2a+3x=0\Leftrightarrow 2(x^2+16x+60)+3x=0$
$\Leftrightarrow 2x^2+35x+120=0\Rightarrow x=\frac{-35\pm \sqrt{265}}{4}$
b.
$(x+1)(x+2)(x+3)(x+6)=120x^2$
$[(x+1)(x+6)][(x+2)(x+3)]=120x^2$
$(x^2+7x+6)(x^2+5x+6)=120x^2$
Đặt $x^2+6=a$ thì pt trở thành:
$(a+7x)(a+5x)=120x^2$
$\Leftrightarrow a^2+12ax-85x^2=0$
$\Leftrightarrow a^2-5ax+17ax-85x^2=0$
$\Leftrightarrow a(a-5x)+17x(a-5x)=0$
$\Leftrightarrow (a-5x)(a+17x)=0$
Nếu $a-5x=0\Leftrightarrow x^2+6-5x=0$
$\Leftrightarrow (x-2)(x-3)=0\Rightarrow x=2$ hoặc $x=3$
Nếu $a+17x=0\Leftrightarrow x^2+17x+6=0$
$\Rightarrow x=\frac{-17\pm \sqrt{265}}{2}$
Vậy.........
\(a,6x^2-9x=3x\left(x-3\right)\)
\(b,x^3-2x^2-3x+6\)
\(=\left(x^3-2x^2\right)-\left(3x-6\right)\)
\(=x^2\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x^2-3\right)\left(x-2\right)\)
\(e,2x\left(x-y\right)-3y\left(x-y\right)\)
\(=\left(2x-3y\right)\left(x-y\right)\)
a) 6x2 - 9x
= 3x (2x - 3)
b) x3 - 2x2 - 3x + 6
= x2(x - 2) - 3 (x - 2)
=(x - 2) (x2 - 3)
c) x2 - 4x + 4 - 9y2
= (x - 2)2 - 9y2
=(x - 2 - 3y)(x - 2 + 3y)
e) 2x(x - y) - 3y(x - y)
= (x - y)(2x - 3y)
xin lỗi mình học ngu nên không biết làm nhìu nha