K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

e) Ta có: \(x^4-2x^3+2x-1\)

\(=\left(x^4-1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2+1\right)\left(x-1\right)\left(x+1\right)-2x\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\cdot\left(x^2-2x+1\right)\)

\(=\left(x+1\right)\cdot\left(x-1\right)^3\)

h) Ta có: \(3x^2-3y^2-2\left(x-y\right)^2\)

\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\)

\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)

\(=\left(x-y\right)\left(x+5y\right)\)

a) Ta có: \(x^2-y^2-2x-2y\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

b) Ta có: \(x^2\left(x+2y\right)-x-2y\)

\(=\left(x+2y\right)\left(x^2-1\right)\)

\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)

13 tháng 8 2021

\(a,=xy\left(-6x+y\right)\)

\(b,=10c\left(a^2-9b^2+3bc-ac\right)=10c\left[\left(a-3b\right)\left(a+3b\right)-c\left(a-3b\right)\right]\)

\(=10c\left[\left(a-3b\right)\left(a+3b-c\right)\right]\)

c,\(=a\left(x-c\right)-b\left(x-c\right)=\left(a-b\right)\left(x-c\right)\)

d,\(=-\left(x-2y-6\right)\left(x-2y+6\right)\)

e;\(=m^2+4m+mn+n^2+4n+mn=m\left(m+4+n\right)+n\left(m+4+n\right)\)\(=\left(m+n\right)\left(m+n+4\right)\)

f,\(=\dfrac{1}{2}\left(4x^2-y^2\right)=\dfrac{1}{2}\left(2x-y\right)\left(2x+y\right)\)

 

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Lời giải:

a. $a^4+a^3+a^2+a=(a^4+a^3)+(a^2+a)$

$=a^3(a+1)+a(a+1)=(a+1)(a^3+a)=a(a+1)(a^2+1)$
b. $3xy^2+5y-3x^2y+(-5x)=(3xy^2-3x^2y)+(5y-5x)$

$=3xy(y-x)+5(y-x)=(y-x)(3xy+5)$

c. $xy-z+y-xz=(xy+y)-(z+xz)=y(x+1)-z(x+1)=(x+1)(y-z)$

d.

$x^2-bx+ax-ab=(a^2+ax)-(bx+ab)=a(a+x)-b(a+x)=(a+x)(a-b)$

NV
5 tháng 8 2021

a.

\(x^3-y^3+2x^2-2y^2\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)+\left(x-y\right)\left(2x+2y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2+2x+2y\right)\)

b.

\(x^3+1-x^2-x\)

\(=\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-2x+1\right)\)

\(=\left(x+1\right)\left(x-1\right)^2\)

14 tháng 8 2021

a) \(=\left(x+6y\right)\left(x-6y\right)-\left(x-6y\right)\)

\(=\left(x-6y\right)\left(x-6y-1\right)\)

b) \(=x\left(x^2-8x+16\right)\)

\(=x\left(x-4\right)^2\)

c) \(=2\left(x-y\right)^2-18\)

\(=2\left[\left(x-y\right)^2-3^2\right]\)

\(=2\left(x-y+3\right)\left(x-y-3\right)\)

a: \(x^2-36y^2-x+6y\)

\(=\left(x-6y\right)\left(x+6y\right)-\left(x-6y\right)\)

\(=\left(x-6y\right)\left(x+6y-1\right)\)

b: \(x^3-8x^2+16x\)

\(=x\left(x^2-8x+16\right)\)

\(=x\left(x-4\right)^2\)

c: \(2x^2-4xy+2y^2-18\)

\(=2\left(x^2-2xy+y^2-9\right)\)

\(=2\left(x-y-3\right)\left(x-y+3\right)\)

d: \(3x^2-7x-10\)

\(=3x^2+3x-10x-10\)

\(=3x\left(x+1\right)-10\left(x+1\right)\)

\(=\left(x+1\right)\left(3x-10\right)\)

28 tháng 10 2021

\(a,=x\left(2x-y\right)+\left(2x-y\right)=\left(x+1\right)\left(2x-y\right)\\ b,=\left(a+b\right)\left(c-2\right)\\ c,=x\left(x+4y\right)+2\left(x+4y\right)=\left(x+2\right)\left(x+4y\right)\\ d,=x\left(x+2y\right)+3\left(x+2y\right)=\left(x+3\right)\left(x+2y\right)\)

17 tháng 7 2023

a) 6x² + 7xy + 2y²

= 6x² + 4xy + 3xy + 2y²

= (6x² + 4xy) + (3xy + 2y²)

= 2x(3x + 2y) + y(3x + 2y)

= (3x + 2y)(2x + y)

b) x² - y² + 10x - 6y + 16

= x² + 10x + 25 - y² - 6y - 9

= (x² + 10x + 25) - (y² + 6y + 9)

= (x + 5)² - (y + 3)²

= (x + 5 - y - 3)(x + 5 + y + 3)

= (x - y + 2)(x + y + 8)

c) 4x⁴ + y⁴

= 4x⁴ + 4x²y² + y⁴ - 4x²y²

= (2x² + y²)² - (2xy)²

= (2x² + y² - 2xy)(2x² + y² + 2xy)

a: Ta có: \(x^2-36y^2-x+6y\)

\(=\left(x-6y\right)\left(x+6y\right)-\left(x-6y\right)\)

\(=\left(x-6y\right)\left(x+6y-1\right)\)

b: Ta có: \(16x-8x^2+x^3\)

\(=x\left(x^2-8x+16\right)\)

\(=x\left(x-4\right)^2\)

c: Ta có: \(2x^2-4xy+2y^2-18\)

\(=2\left(x^2-2xy+y^2-9\right)\)

\(=2\cdot\left[\left(x-y\right)^2-9\right]\)

\(=2\left(x-y-3\right)\left(x-y+3\right)\)

d: Ta có: \(3x^2-7x-10\)

\(=3x^2+3x-10x-10\)

\(=3x\left(x+1\right)-10\left(x+1\right)\)

\(=\left(x+1\right)\left(3x-10\right)\)

e: Ta có: \(x^4-x^2-30\)

\(=x^4-6x^2+5x^2-30\)

\(=x^2\left(x^2-6\right)+5\left(x^2-6\right)\)

\(=\left(x^2-6\right)\left(x^2+5\right)\)

f: Ta có: \(x^2-xy-2y^2\)

\(=x^2-2xy+xy-2y^2\)

\(=x\left(x-2y\right)+y\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+y\right)\)

g: Ta có: \(x^4-13x^2y^2+4y^4\)

\(=x^4-4x^2y^2+4y^4-9x^2y^2\)

\(=\left(x^2-2y^2\right)^2-\left(3xy\right)^2\)

\(=\left(x^2-3xy-2y^2\right)\left(x^2-3xy+2y^2\right)\)

\(=\left(x^2-3xy-2y^2\right)\left(x^2-xy-2xy+2y^2\right)\)

\(=\left[x\left(x-y\right)-2y\left(x-y\right)\right]\left(x^2-3xy-2y^2\right)\)

\(=\left(x-y\right)\left(x-2y\right)\left(x^2-3xy-2y^2\right)\)

h: Ta có: \(\left(x^2-2x\right)^2-2\left(x^2-2x\right)-3\)

\(=\left(x^2-2x\right)^2-3\left(x^2-2x\right)+\left(x^2-2x\right)-3\)

\(=\left(x^2-2x\right)\left(x^2-2x-3\right)+\left(x^2-2x-3\right)\)

\(=\left(x^2-2x-3\right)\left(x^2-2x+1\right)\)

\(=\left(x-3\right)\left(x+1\right)\cdot\left(x-1\right)^2\)

5 tháng 8 2021