Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^4+3x^3-7x^2-6x+8\)
\(=2x^4+5x^3-2x^2-8x-2x^3-5x^2+2x+8\)
\(=x\left(2x^3+5x^2-2x-8\right)-\left(2x^3+5x^2-2x-8\right)\)
\(=\left(x-1\right)\left(2x^3+5x^2-2x-8\right)\)
\(=\left(x-1\right)\left(2x^3+x^2-4x+4x^2+2x-8\right)\)
\(=\left(x-1\right)\left[x\left(2x^2+x-4\right)+2\left(2x^2+x-4\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(2x^2+x-4\right)\)
\(3x^4+6x^3-7x^2+8x-10\)
\(=\left(3x^4-3x^3\right)+\left(9x^3-9x^2\right)+\left(2x^2-2x\right)+\left(10x-10\right)\)
\(=\left(x-1\right)\left(3x^3+9x^2+2x+10\right)\)
c ) \(3x^3-7x^2+17x-5\)
\(=3x^3-x^2-6x^2+2x+15x-5\)
\(=\left(3x^3-x^2\right)-\left(6x^2-2x\right)+\left(15x-5\right)\)
\(=x^2\left(3x-1\right)-2x\left(3x-1\right)+5\left(3x-1\right)\)
\(=\left(3x-1\right)\left(x^2-2x+5\right)\)
Ta có : \(4x^2-3x-1\)
\(=4x^2-4x+x-1\)
\(=4x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(4x+1\right)\)
Ta có : \(x^2-7x+12\)
\(=x^2-3x-4x+12\)
\(=x\left(x-3\right)-\left(4x-12\right)\)
\(=x\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-4\right)\left(x-3\right)\)
\(-3x^2-7x+10\)
\(=3x-3x^2+10-10x\)
\(=3x.\left(1-x\right)+10.\left(1-x\right)=\left(3x+10\right).\left(1-x\right)\)
\(-3x^2+3y^2-4xz-4yz\)
\(=3\left(y^2-x^2\right)-4z\left(x+y\right)\)
\(=3\left(y-x\right)\left(x+y\right)-4z\left(x+y\right)\)
\(=\left(x+y\right)\left(3y-3x-4z\right)\)
=X4-3X3 +6X3-18X2+11X2-33X+6X-18
=(X-3)(X3+6X2+11X+6)
=(X-3)(X+3)(X+1)(X+2)
\(x^4+3x^3-7x^2-27x-18.\)
\(=\left(x^4-9x^2\right)+\left(3x^3-27x\right)+\left(2x^2-18\right)\)
\(=x^2\left(x-3\right)\left(x+3\right)+3x\left(x-3\right)\left(x+3\right)+2\left(x-3\right)\left(x+3\right).\)
\(=\left(x-3\right)\left(x+3\right)\left(x^2+3x+2\right)\)
\(=\left(x-3\right)\left(x+3\right)\left(x^2+x+2x+2\right)\)
\(=\left(x-3\right)\left(x+3\right)\left(x+1\right)\left(x+2\right).\)
a) \(4x^4+4x^3+5x^2+2x+1\)
= \(x^2\left(4x^2+4x+5+\frac{4}{x}+\frac{1}{x^2}\right)\)
=\(x^2\left[\left(4x^2+\frac{1}{x^2}\right)+2\left(2x+\frac{1}{x}\right)+5\right]\)(1)
Đặt \(2x+\frac{1}{x}=a\)thì \(\left(2x+\frac{1}{x}\right)^2=a^2\)\(\Rightarrow4x^2+\frac{1}{x^2}=a^2-4\)
Thay vào (1), ta có:
\(x^2\left(a^2-4+2a+5\right)\)
=\(x^2\left(a^2+2a+1\right)\)
=\(x^2\left(a+1\right)^2\)
=\(\left[x\left(a+1\right)\right]^2\)
=\(\left[x\left(2x+\frac{1}{x}+1\right)\right]^2\)
=\(\left(2x^2+1+x\right)^2\)
\(=\left(2x^2+x+1\right)^2\)
a) Đặt f(x) = 4x4 + 4x3 + 5x2 + 2x + 1
Sau khi phân tích thì đa thức có dạng ( 2x2 + ax + 1 )( 2x2 + bx + 1 )
=> f(x) = ( 2x2 + ax + 1 )( 2x2 + bx + 1 )
<=> f(x) = 4x4 + 2bx3 + 2x2 + 2ax3 + abx2 + ax + 2x2 + bx + 1
<=> f(x) = 4x4 + ( a + b )2x3 + ( ab + 4 )x2 + ( a + b )x + 1
Đồng nhất hệ số ta có : \(\hept{\begin{cases}a+b=2\\ab=1\end{cases}\Leftrightarrow}a=b=1\)
Vậy f(x) = 4x4 + 4x3 + 5x2 + 2x + 1 = ( 2x2 + x + 1 )2
b) 3x4 + 11x3 - 7x2 - 2x + 1
= 3x4 - x3 + 12x3 - 4x2 - 3x2 + x - 3x + 1
= x3( 3x - 1 ) + 4x2( 3x - 1 ) - x( 3x - 1 ) - ( 3x - 1 )
= ( 3x - 1 )( x3 + 4x2 - x - 1 )
\(15x^2+7x-2\)
\(=15x^2+10-3x-2\)
\(=5x\left(3x+2\right)-\left(3x+2\right)\)
\(=\left(3x+2\right)\left(5x-1\right)\)
\(7x-3x^2-2\)
\(=6x+x-3x^2-2\)
\(=\left(6x-3x^2\right)+\left(x-2\right)\)
\(=-3x\left(x-2\right)+\left(x-2\right)\)
\(=\left(-3x+1\right)\left(x-2\right)\)
\(7x - 3x^2 - 2\)
\(= 6x + x - 3x^2 - 2\)
\(=(6x-3x^2)+(x-2)\)
\(= -3x(x-2)+(x-2)\)
\(=(-3x+1)(x-2)\)