Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(15x^3y^2+10x^2y^2-2x^2y^3\)
\(=x^2y^2\left(15x+10-2y\right)\)
a: \(=5xy\left(x^2-2xy+y^2\right)=5xy\left(x-y\right)^2\)
b: \(=2x^2+10x-3x-15\)
\(=2x\left(x+5\right)-3\left(x+5\right)=\left(x+5\right)\left(2x-3\right)\)
1) \(3\left(x+4\right)-x^2-4x=3\left(x+4\right)-x\left(x+4\right)=\left(x+4\right)\left(3-x\right)\)
2) \(5x^2-5y^2-10x+10y=5\left(x^2-y^2\right)-10\left(x-y\right)\)
\(=5\left(x-y\right)\left(x+y\right)-10\left(x-y\right)=\left(x-y\right)\left(5x+5y-10\right)\)
3) \(x^2-xy+x-y=x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(x+1\right)\)
4) \(ax-bx-a^2+2ab-b^2=x\left(a-b\right)-\left(a^2-2ab+b^2\right)\)
\(=x\left(a-b\right)-\left(a-b\right)^2=\left(a-b\right)\left(x-a+b\right)\)
5) \(x^3-x^2-x+1=x^2\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^2-1\right)\)
\(=\left(x-1\right)\left(x-1\right)\left(x+1\right)=\left(x-1\right)^2\left(x+1\right)\)
6) \(x^2+4x-y^2+4=x^2+4x+4-y^2=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
/ (4x−2)(10x+4)(5x+7)(2x+1)+17=0
⇔(4x−2)(5x+7)(10x+4)(2x+1)+17=0
⇔(20x2+18x−14)(20x2+18x+4)+17=0
Đặt t= 20x2+18x+4(t≥0) ta có:
(t-18).t +17=0
⇔t2−18t+17=0
⇔(t−17)(t−1)=0
⇔[t=17(tm)t=1(tm) ⇔[20x2+18x+4=1720x2+18x+4=1⇔[20x2+18x−13=020x2+18+3=0
⇔[(20x+9−341−−−√)(20x+9+341−−−√)=0(20x+9−21−−√)(20x+9+21−−√)=0
⇔⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢x=−9+341−−−√20x=−9−341−−−√20x=−9+21−−√20x=−9−21−−√20
\(a,\)\(\left(4x-2\right)\left(10x+4\right)\left(5x+7\right)\left(2x+1\right)+17\)
\(=\left(4x-2\right)\left(5x+7\right)\left(10x+4\right)\left(2x+1\right)+17\)
\(=\left(20x^2+18x-5\right)\left(20x^2+18x+4\right)+17\)
Đặt ....
a) Ta có: \(x^2\left(x-1\right)+16\left(1-x\right)\)
\(=x^2\left(x-1\right)-16\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-16\right)\)
\(=\left(x-1\right)\left(x-4\right)\left(x+4\right)\)
b) Ta có: \(5x^2-5y^2-10x+10y\)
\(=5\left(x^2-y^2\right)-10\left(x-y\right)\)
\(=5\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\cdot2\)
\(=5\left(x-y\right)\left(x+y-2\right)\)
c) Ta có: \(x^2+4x-y^2+4\)
\(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
\(-3xy^2+x^2y^2-5x^2y\)
\(=-xy\left(3y+xy-5x\right)\)
\(x\left(y-1\right)+3\left(y^3+2y+1\right)\)
\(=3y^3+6y+3+xy-x\)
Xem lại nhé ko phân tích được
\(12xy^2-12xy+3x\)
\(=3x\left(4y^2-4y+1\right)\)
\(=3x\left(2y-1\right)^2\)
\(10x^2\left(x+y\right)-5\left(2x+2y\right)y^2\)
\(=10x^2\left(x+y\right)-10\left(x+y\right)y^2\)
\(=10\left(x+y\right)\left(x-y\right)\left(x+y\right)\)
\(=10\left(x+y\right)^2\left(x-y\right)\)
Phân tích đa thức thành nhân tử:
a) \(3a^2-3ab+9b-9a=3a\left(a-b\right)+9\left(b-a\right)=3\left(a-b\right)\left(a-3\right)\)
b) \(2xm^3-2m=2m\left(xm^2-1\right)\)
c) \(x^2-5x+6=x^2-2x-3x+6=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)
Tìm x:
a) \(8x^2+10x+3=0\)
\(\Leftrightarrow8x^2+12x-2x-3=0\Leftrightarrow4x\left(2x+3\right)-\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(4x-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{3}{2}\\x=\frac{1}{4}\end{array}\right.\)
b) \(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-2=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=2\end{array}\right.\)
\(\left(x+y\right)^2+3\left(x+y\right)-10=\left[\left(x+y\right)^2+2\left(x+y\right).\dfrac{3}{2}+\dfrac{9}{4}\right]-\dfrac{49}{4}\)
\(=\left(x+y+\dfrac{3}{2}\right)^2-\dfrac{49}{4}=\left(x+y+\dfrac{3}{2}-\dfrac{7}{2}\right)\left(x+y+\dfrac{3}{2}+\dfrac{7}{2}\right)=\left(x+y-2\right)\left(x+y+5\right)\)
\(\left(x+y\right)^2+3\left(x+y\right)-10\)
\(=\left(x+y\right)^2+5\left(x+y\right)-2\left(x+y\right)-10\)
\(=\left(x+y+5\right)\left(x+y-2\right)\)
\(5x^4y+10x^3y+10x^2y^3+5xy^4\)
\(=5xy.x^3+5xy.2x^3+5xy.2xy^3+5xy.y^3\)
\(=5xy\left(x^3+2x^3+2xy^3+y^3\right)\)
Ht pt