Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+4x+6\right)\left(x^2+6x+6\right)-3x^2\left(1\right)\)
Đặt \(x^2+5x+6=t\)Thay vào (1) ta được:
\(\left(t-x\right)\left(t+x\right)-3x^2\)
\(=t^2-x^2-3x^2\)
\(=t^2-4x^2\)
\(=\left(t-2x\right)\left(t+2x\right)\)Thay \(t=x^2+5x+6\)ta được:
\(\left(x^2+5x+6-2x\right)\left(x^2+5x+6+2x\right)\)
\(=\left(x^2+3x+6\right)\left(x^2+7x+6\right)\)
\(=\left(x^2+3x+6\right)\left(x^2+x+6x+6\right)\)
\(=\left(x^2+3x+6\right)\left[x\left(x+1\right)+6\left(x+1\right)\right]\)
\(=\left(x^2+3x+6\right)\left(x+1\right)\left(x+6\right)\)
\(x^4+2009x^2+2008x+2009\)
\(=\left(x^4+x^3+x^2\right)+\left(-x^3-x^2-x\right)+\left(2009x^2+2009x+2009\right)\)
\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2009\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2009\right)\)
\(=x+2\sqrt{xy}+y-9\)
\(=\left(\sqrt{x}+\sqrt{y}\right)^2-3^2\)
\(=\left(\sqrt{x}+\sqrt{y}-3\right)\left(\sqrt{x}+\sqrt{y}+3\right)\)
alibaba nguyễn: Cái đó đúng là đa thức mà! Nhưng mà ko bt làm thôi à T_T!
\(x^2-16+2\left(x+4\right)\)
\(=\left(x+4\right)\left(x-4\right)+2\left(x+4\right)\)
\(=\left(x+4\right)\left(x-4+2\right)\)
\(=\left(x+4\right)\left(x-2\right)\)
\(4x^4-37x^2+9=4x^4-36x^2-x^2+9=4x^2\left(x^2-9\right)-\left(x^2-9\right).\)
\(=\left(x^2-9\right)\left(4x^2-1\right)=\left(x-3\right)\left(x+3\right)\left(2x-1\right)\left(2x+1\right)\)
Đặt t = x2
đa thức trở thành 4t2 - 37t + 9
= 4t2 - t - 36t + 9
= ( 4t2 - 36t ) - ( t - 9 )
= 4t( t - 9 ) - ( t - 9 )
= ( t - 9 )( 4t - 1 )
= ( x2 - 9 )( 4x2 - 1 )
= ( x - 3 )( x + 3 )( 2x - 1 )( 2x + 1 )