Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Ta có: B(x) = 6x4 - 7x3 + 6x2- 7x3 + 4x4 + 3 - 5x + 2x
= 10x4 - 14x3 + 6x2 - 3x + 3.
Đa thức 3x2 – 8x +1 có các hạng tử là: 3x2 ; -8x ; 1
Ta có: 2x . 3x2 = (2.3). (x.x2) = 6x3
2x. (-8x) = [2.(-8) ]. (x.x) = -16x2
2x. 1 = 2x
Vậy 2x.(3x2 – 8x + 1) = 6x3 -16x2 + 2x
a) (5x3 – 2x2 + 4x – 4) . ( x3 + 3x2 – 5)
= 5x3 . ( x3 + 3x2 – 5) - 2x2 . ( x3 + 3x2 – 5) + 4x . ( x3 + 3x2 – 5) – 4 . ( x3 + 3x2 – 5)
= 5x3 . x3 + 5x3 . 3x2 + 5x3 . (-5) – [ 2x2 . x3 + 2x2 . 3x2 +2x2 . (-5)] + [4x . x3 + 4x. 3x2 + 4x . (-5)] – [ 4x3 + 4.3x2 + 4.(-5)]
= 5x6 + 15x5 – 25x3 – (2x5 + 6x4 – 10x2) + 4x4 + 12x3 – 20x – (4x3 + 12x2 – 20)
= 5x6 + 15x5 – 25x3 – 2x5 - 6x4 + 10x2 + 4x4 + 12x3 – 20x – 4x3 - 12x2 + 20
= 5x6 + (15x5 – 2x5 ) + (- 6x4 + 4x4 ) + (-25x3 + 12x3 – 4x3 ) + (10x2 - 12x2 ) – 20x + 20
= 5x6 + 13x5 – 2x4 – 17x3 -2x2 – 20x + 20
b) (-2,5.x4 + 0,5x2 + 1) . (4x3 – 2x + 6)
= -2,5.x4 . (4x3 – 2x + 6) + 0,5x2 . (4x3 – 2x + 6) + 1. (4x3 – 2x + 6)
= (-2,5.x4) . 4x3 + (-2,5.x4 ) . (-2x) + (-2,5.x4 ) . 6 + 0,5x2 . 4x3 + 0,5x2 . (-2x) + 0,5x2 . 6 + 4x3 – 2x + 6
= -10x7 + 5x5 – 15x4 + 2x5 – x3 + 3x2 + 4x3 – 2x + 6
= -10x7 + ( 5x5 + 2x5 ) - 15x4 + (– x3 + 4x3 ) + 3x2 – 2x + 6
= -10x7 +7x5 - 15x4 + 3x3 + 3x2 – 2x + 6
`a,`
`P(x)=5x^3+3-3x^2+x^4-2x-2+2x^2+x`
`P(x)=x^4+5x^3+(-3x^2+2x^2)+(-2x+x)+(3-2)`
`P(x)=x^4+5x^3-x^2-x+1`
`Q(x)=2x^4+x^2+2x+2-3x^2-5x+2x^3-x^4`
`Q(x)=(2x^4-x^4)+2x^3+(x^2-3x^2)+(2x-5x)+2`
`Q(x)=x^4+2x^3-2x^2-3x+2`
`b,`
`P(x)-Q(x)=(x^4+5x^3-x^2-x+1)-(x^4+2x^3-2x^2-3x+2)`
`P(x)-Q(x)= x^4+5x^3-x^2-x+1-x^4-2x^3+2x^2+3x-2`
`P(x)-Q(x)=(x^4-x^4)+(5x^3-2x^3)+(-x^2+2x^2)+(-x+3x)+(1-2)`
`P(x)-Q(x)=3x^3+x^2+2x-1`
\(2x-3x^2+x\)
\(=x\left(2-3x+1\right)\)
\(=x\left(-3x+3\right)\)
\(=-3x\left(x-1\right)\)
2x - 3x2 + x
=x.(2-3x+1)
=x.(3-3x)
=x.(3.(1-x))
=3x.(1-x)
\(x^2-2x-35\)
\(=x^2-2x+1-36\)
\(=\left(x-1\right)^2-36\)
\(=\left(x-1\right)^2-6^2\)
\(=\left(x-1-6\right)\left(x-1+6\right)\)
\(=\left(x-7\right)\left(x+5\right)\)
Ủng hộ mik nha
Thanks @@@@@@
Ta có
1,\(3x^2+2x-1=3x^2+3x-x-1=3x\left(x+1\right)-\left(x+1\right)\)
\(\left(x+1\right)\left(3x-1\right)\)
2, \(x^3+2x^2+4x^2+8x+3x+6\)
\(=x^2\left(x+2\right)+4x\left(x+2\right)+3\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+4x+3\right)\)
\(=\left(x+2\right)\left(x^2+x+3x+3\right)\)
\(=\left(x+2\right)\text{[}x\left(x+1\right)+3\left(x+1\right)\text{]}\)
\(=\left(x+2\right)\left(x+1\right)\left(x+3\right)\)
3,\(x^4+2x^2-3=x^4-x^2+3x^2-3\)
\(=x^2\left(x^2-1\right)+3\left(x^2-1\right)\)
\(\left(x^2-1\right)\left(x^2+3\right)=\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)
4,\(ab+ac+b^2+2bc+c^2\)
\(=a\left(b+c\right)+\left(b+c\right)^2\)
\(=\left(b+c\right)\left(a+b+c\right)\)