K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2021

Answer:

\(25x^2-10x+4y-4y^2\)

\(=25x^2-10x+1-4x^2+4y-1\)

\(=\left(25x^2-10x+1\right)-\left(4y^2-2y+1\right)\)

\(=[\left(5x\right)^2-2.5x.1+1]-[\left(2y\right)^2-2.2y.1+1]\)

\(=\left(5x-1\right)^2-\left(2y-1\right)^2\)

\(=\left(5x-1-2y+1\right).\left(5x-1+2y-1\right)\)

\(=\left(5x-2y\right).\left(5x+2y-2\right)\)

25 tháng 12 2021

= ( x2 - 4y2 ) - ( 2x + 4y )

= ( x - 2y ) ( x + 2y ) - 2 ( x - 2y )

= ( x - 2y ) ( x + 2y - 2 )

25 tháng 12 2021

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

12 tháng 10 2021

\(\left(x-2y\right)\left(x+2y\right)+\left(x+1\right)\)

27 tháng 3 2019

18 tháng 1 2019

21 tháng 8 2021

1, \(a^6+b^3=\left(a^2+b\right)\left(a^4-a^2b+b^2\right)\)

2, \(x^2-10x+25=\left(x-5\right)^2\) 

3, \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)

4, \(x^2+4xy+4y^2=\left(x+2y\right)^2\)

21 tháng 8 2021

1) \(a^6+b^3=\left(a^2\right)^3+b^3=\left(a^2+b\right)\left(a^4-a^2b+b^2\right)\)

2) \(x^2-10x+25=\left(x-5\right)^2\)

3) \(8x^3-\dfrac{1}{8}=\left(2x\right)^3-\left(\dfrac{1}{3}\right)^3=\left(2x-\dfrac{1}{3}\right)\left(4x^2+\dfrac{2x}{3}+\dfrac{1}{4}\right)\)

4) \(x^2+4xy+4y^2=\left(x+2y\right)^2\)

1 tháng 10 2021

`a)x^3-8x^2+16x`

`=x(x^2-8x+16)`

`=x(x-4)^2`

`b)x^2+4y^2+2x-4y-4xy-24`

`=(x-2y)^2+2(x-2y)-24`

`=(x-2y)^2-4(x-2y)+6(x-2y)-24`

`=(x-2y-4)(x-2y+6)`

`c)x^4+x^3-x^2-2x-2`

`=x^4-2x^2+x^3-2x+x^2-2`

`=x^2(x^2-2)+x(x^2-2)+x^2-2`

`=(x^2-2)(x^2+x+1)`

15 tháng 12 2023

a: \(x^2-4xy+4y^2-2x+4y-35\)

\(=\left(x^2-4xy+4y^2\right)-\left(2x-4y\right)-35\)

\(=\left(x-2y\right)^2-2\left(x-2y\right)-35\)

\(=\left(x-2y\right)^2-7\left(x-2y\right)+5\left(x-2y\right)-35\)

\(=\left(x-2y\right)\left(x-2y-7\right)+5\left(x-2y-7\right)\)

\(=\left(x-2y-7\right)\left(x-2y+5\right)\)

c: \(\left(xy+ab\right)^2+\left(ay-bx\right)^2\)

\(=x^2y^2+a^2b^2+2xyab+a^2y^2-2aybx+b^2x^2\)

\(=x^2y^2+a^2y^2+a^2b^2+b^2x^2\)

\(=y^2\left(x^2+a^2\right)+b^2\left(a^2+x^2\right)\)

\(=\left(x^2+a^2\right)\left(y^2+b^2\right)\)

14 tháng 11 2021

\(a,=x\left(x+y\right)+5\left(x+y\right)=\left(x+5\right)\left(x+y\right)\\ b,=x\left(y-x\right)-3\left(y-x\right)=\left(x-3\right)\left(y-x\right)\\ c,=18x-4x^3=2x\left(9-2x^2\right)\\ d,=\left(x-2\right)^2-4y^2=\left(x-2y-2\right)\left(x+2y-2\right)\\ e,=x^2-x-9x+9=\left(x-1\right)\left(x-9\right)\\ f,=4x^2-6x+2x-3=\left(2x-3\right)\left(2x+1\right)\)

12 tháng 10 2021

Bài 2: 

Sửa đề:  \(x^3-3x^2-10x=0\)

\(\Leftrightarrow x\left(x^2-3x-10\right)=0\)

\(\Leftrightarrow x\left(x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-2\end{matrix}\right.\)