Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
16x - 5x² - 3 = -5x² + 16x - 3 = -5x² + 15x + x - 3
= -5x(x - 3) + (x - 3) = (x - 3)(1 - 5x)
\(-5x^2+16x-3\)
\(=-5x^2+15x+x-3\)
\(=-5x\left(x-3\right)+\left(x-3\right)\)
\(=\left(x-3\right)\left(1-5x\right)\)
16x - 5x^2 - 3
=x - 5x^2 + 15x - 3
=x(1-5x) + 3(5x-1)
=3(5x-1) -x(5x-1)
=(3-x)(5x-1)
\(-5x^2+16x-3=-5x^2+15x+x-3=-5x\left(x-3\right)+\left(x-3\right)=\left(x-3\right)\left(-5x+1\right)\)
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
1) \(4x^2-y^2+4x+1\)
\(=\left(4x^2+4x+1\right)-y^2\)
\(=\left(2x+1\right)^2-y^2\)
\(=\left(2x+y+1\right)\left(2x-y+1\right)\)
\(x^2-5x+6\)
\(=x^2-5x+\frac{25}{4}-\frac{1}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\left(\frac{1}{2}\right)^2\)
\(=\left(x-\frac{5}{2}-\frac{1}{2}\right)\left(x-\frac{5}{2}+\frac{1}{2}\right)\)
\(=\left(x-3\right)\left(x-2\right)\)
\(x^2-5x+6 \)
= \(x^2-2x-3x+6\)
= \(\left(x^2-2x\right)-\left(3x-6\right)\)
= \(x\left(x-2\right)-3\left(x-2\right)\)
= \(\left(x-2\right)\left(x-3\right)\)
a) \(-5x^2+16x-3=-5x^2+15x+x-3=-5x\left(x-3\right)+x-3=\left(x-3\right)\left(1-5x\right).\)
b) \(x^4+64=x^4+16x^2+64-16x^2=\left(x^2+8\right)^2-\left(4x\right)^2=\left(x^2+4x+8\right)\left(x^2-4x+8\right).\)
c) \(64x^2+4y^4=4\left(16x^2+y^4\right)\)
d) \(x^5+x-1\)đa thức này có nghiệm vô tỷ. Mik ko phân tích được.
16x - 5x2 - 3
= 5x2 - 16x - 3
= 5x2 - 15x - x - 3
= 5x(x - 3) - (x - 3)
= (x - 3)(5x - 1)