Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(x\left(x^2-5xy-14y^2\right)=x\left(x^2-7xy+2xy-14y^2\right)\)
\(=x\left(x-2\right)\left(x-7\right)\)
2. \(x^4+2x^2+1-9x^2=\left(x^2+1\right)^2-\left(3x\right)^2=\left(x^2+1-3x\right)\left(x^2+1+3x\right)\)
3. \(4x^4+4x^2+1-16x^2=\left(2x^2+1\right)^2-\left(4x\right)^2=\left(2x^2-4x+1\right)\left(2x^2+4x+1\right)\)
4. \(x^2+x+7x+7=\left(x+7\right)\left(x+1\right)\)
5. \(x\left(x^2-5x-14\right)=x\left(x^2-7x+2x-14\right)=x\left(x+2\right)\left(x-7\right)\)
Phân tích đa thức thành nhân tử :
1.x3-5x2y-14xy2
2.x4-7x2+1
3.4x4-12x2+1
4.x2+8x+7
5.x3-5x2-14x
X^2n - 4 X^n.Y^n-1 + 4Y^2(n-1)
(X ^ n)^2 - 2. X^n.2. Y^n-1 + (2Y ^n-1)^2
= ( X ^N - 2Y^n-1 ) ^2
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
Bài 1.
a) x( 8x - 2 ) - 8x2 + 12 = 0
<=> 8x2 - 2x - 8x2 + 12 = 0
<=> 12 - 2x = 0
<=> 2x = 12
<=> x = 6
b) x( 4x - 5 ) - ( 2x + 1 )2 = 0
<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0
<=> 4x2 - 5x - 4x2 - 4x - 1 = 0
<=> -9x - 1 = 0
<=> -9x = 1
<=> x = -1/9
c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )
<=> -4x2 - 4x + 35 = 4x2 - 25
<=> -4x2 - 4x + 35 - 4x2 + 25 = 0
<=> -8x2 - 4x + 60 = 0
<=> -8x2 + 20x - 24x + 60 = 0
<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0
<=> ( 2x - 5 )( -4x - 12 ) = 0
<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
d) 64x2 - 49 = 0
<=> ( 8x )2 - 72 = 0
<=> ( 8x - 7 )( 8x + 7 ) = 0
<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)
e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0
<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0
<=> ( x + 3 )2 [ x( x + 1 ) + 7( x + 1 ) ] = 0
<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0
<=> x = -3 hoặc x = -1 hoặc x = -7
g) ( x2 + 1 )( x2 - 8x + 7 ) = 0
Vì x2 + 1 ≥ 1 > 0 với mọi x
=> x2 - 8x + 7 = 0
=> x2 - x - 7x + 7 = 0
=> x( x - 1 ) - 7( x - 1 ) = 0
=> ( x - 1 )( x - 7 ) = 0
=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)
Bài 2.
a) ( x - 1 )2 - ( x - 2 )( x + 2 )
= x2 - 2x + 1 - ( x2 - 4 )
= x2 - 2x + 1 - x2 + 4
= -2x + 5
b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2
= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4
= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )
= -60x2 + 40x2 + 49
d) ( x + y )2 - ( x + y - 2 )2
= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]
= ( x + y - x - y + 2 )( x + y + x + y - 2 )
= 2( 2x + 2y - 2 )
= 4x + 4y - 4
Bài 3.
A = 3x2 + 18x + 33
= 3( x2 + 6x + 9 ) + 6
= 3( x + 3 )2 + 6 ≥ 6 ∀ x
Đẳng thức xảy ra <=> x + 3 = 0 => x = -3
=> MinA = 6 <=> x = -3
B = x2 - 6x + 10 + y2
= ( x2 - 6x + 9 ) + y2 + 1
= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)
=> MinB = 1 <=> x = 3 ; y = 0
C = ( 2x - 1 )2 + ( x + 2 )2
= 4x2 - 4x + 1 + x2 + 4x + 4
= 5x2 + 5 ≥ 5 ∀ x
Đẳng thức xảy ra <=> 5x2 = 0 => x = 0
=> MinC = 5 <=> x = 0
D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )
Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN
7x2 - 8x + 7
= 7( x2 - 8/7x + 16/49 ) + 33/7
= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x
Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7
=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7
1a/ x3+x2+x+1=0
x2(x+1).(x+1)=0
=> x2(x+1)=0 x =1
hoặc =>[
x+1=0 x=-1
b/(x+2)2=x+2
x2+2.x.2+22 =x+2
x+x+4x+4=x+2
6x+4=x+2
....
c/(x+1)(6x2+2x)+(x-1)(6x2+2x)=0
x2-12 + (6x2+2x)2=0
=> x2-1 = 0 x=1
hoặc => [
(6x2+2x)2=0 x= 0
a) \(x^3-x^2-4=x^3-2x^2+x^2-4=x^2\left(x-2\right)+\left(x-2\right)\left(x+2\right)=\left(x-2\right)\left(x^2+x+2\right)\)
b) \(x^3-5x^2+8x-4=x^3-x^2-4x^2+4x+4x-4=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)
c) \(2x^3-12x^2+17x-2=2x^3-4x^2-8x^2+16x+x-2=2x^2\left(x-2\right)-8x\left(x-2\right)+\left(x-2\right).\)
\(=\left(x-2\right)\left(2x^2-8x+1\right)\)
d) \(2x^4+x^3-22x^2+15x+36=2x^4+2x^3-x^3-x^2-21x^2-21x+36x+36.\)
\(=2x^3\left(x+1\right)-x^2\left(x+1\right)-21x\left(x+1\right)+36\left(x+1\right)\)
\(=\left(x+1\right)\left(2x^3-x^2-21x+36\right)\)
Câu 1 :
\(a,x^3-6x^2+9x\)
\(=x\left(x^2-6x+9\right)\)
\(=x\left(x-3\right)\)
b;c tự lm nha !!! : câu 2 cx vậy
1.b) x2 - 2xy + 3x - 6y = x2 - 2xy + 3x - 3y x 2
= (x2 - 2xy) + (3x - 3y) x 2
= 2x (x - y) + 3 (x - y) x 2
= (x - y) (2x + 3 x 2)
= (x - y) (2x + 6)
2.
(2x4 - 3x3 + 3x2 - 3x + 1) : (x2 + 1)
2x4 - 3x3 + 3x2 - 3x + 1 / x2 + 1
2x4 + 2x2 / 2x2 - 3x + 1
0 - 3x3 + x2 - 3x + 1 /
- 3x3 - 3x /
0 + x2 + 0 + 1 /
x2 + 1 /
0
=> đây là phép chia hết
Vậy (2x4 - 3x3 + 3x2 - 3x + 1) : (x2 + 1) = 2x2 - 3x + 1
(Sai thì thôi)
a) \(9x^2-12x+4\)
\(=9x^2-6x-6x+4\)
\(=3x\left(3x-2\right)-2\left(3x-2\right)\)
\(=\left(3x-2\right)^2\)
b) \(2xy+16-x^2-y^2\)
\(=-\left(x^2-2xy+y^2-16\right)\)
\(=-\left(x-y\right)^2+16\)
\(=\left(4-x+y\right)\left(4+x-y\right)\)
c) \(3x+2x^2-2\)
\(=2x^2+4x-x-2\)
\(=2x\left(x+2\right)-\left(x+2\right)=\left(x+2\right)\left(2x-1\right)\)
1)
\(y^2-4y+4-x^2\\ =\left(y-2\right)^2-x^2\\ =\left(y-2-x\right)\left(y-2+x\right)\)
2)
\(8x^3-12x^2+6x-2\\ =2\left(4x^3-6x^2+3x-1\right)\\ =2\left(4x^3-4x^2-2x^2+2x+x-1\right)\\ =2\left(4x^2\left(x-1\right)-2x\left(x-1\right)+\left(x-1\right)\right)\\ =2\left(x-1\right)\left(4x^2-2x+1\right)\)
1) \(y^2-4y+4-x^2\)
\(=\left(y^2-4y+4\right)-x^2\)
\(=\left(y-2\right)^2-x^2\)
\(=\left(y-2-x\right)\left(y-2+x\right)\)
2) \(8x^3-12x^2+6x-1\)
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3\)
\(=\left(2x-1\right)^3\)
\(=\left(2x-1\right)\left(2x-1\right)\left(2x-1\right)\)