\( x{\sqrt{x}}\) + \(y{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

1)  \(x\sqrt{x}+y\sqrt{y}=\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\)

2) \(x-3=\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)\)

3) \(a+b=a-\left(-b\right)=\left(\sqrt{a}-\sqrt{-b}\right)\left(\sqrt{a}+\sqrt{-b}\right)\)
p/s: chúc bạn học tốt

4 tháng 10 2020

a) \(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}\)

\(=a\sqrt{a}-b\sqrt{b}+a\sqrt{b}-b\sqrt{a}\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)-\left(\sqrt{a}-\sqrt{b}\right)\sqrt{ab}\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b-\sqrt{ab}\right)\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+b\right)\)

4 tháng 10 2020

b) \(x-y+\sqrt{xy^2}-\sqrt{y^3}\)

\(=\left(x-y\right)+\left(y\sqrt{x}-y\sqrt{y}\right)\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{x}-\sqrt{y}\right)\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+y\right)\)

5 tháng 7 2019

a) \(=9x-9\sqrt{xy}+4\sqrt{xy}-4y\)

\(=\left(9x-9\sqrt{xy}\right)+\left(4\sqrt{xy}-4y\right)\)

\(=9\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)+4\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(9\sqrt{x}+4\sqrt{y}\right)\)

b)\(=\left(xy+\sqrt{x}.y\right)+\left(\sqrt{x}+1\right)\)

 \(=\sqrt{x}y\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)\)

\(=\left(\sqrt{x}+1\right)\left(\sqrt{x}.y+1\right)\)

5 tháng 7 2019

Thank kill cô :))

19 tháng 7 2018

a)\(3-\sqrt{3}+\sqrt{15}-3\sqrt{5}=\sqrt{3}\left(\sqrt{3}-1\right)-\sqrt{15}\left(\sqrt{3}-1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{15}\right)=\sqrt{3}\left(\sqrt{3}-1\right)\left(1-\sqrt{5}\right)\)\(\)b)\(\sqrt{1-a}+\sqrt{1-a^2}=\sqrt{1-a}.1+\sqrt{1-a}.\sqrt{1+a}=\sqrt{1-a}\left(\sqrt{1+a}+1\right)\)

19 tháng 7 2018

c)\(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b+\sqrt{ab}\right)=\left(\sqrt{a}-\sqrt{b}\right)\left(a+2\sqrt{ab}+b\right)=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)^2\)

25 tháng 7 2019

1) \(x-y\)

\(=\left(\sqrt{x}\right)^2-\left(\sqrt{y}\right)^2\)

\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)

25 tháng 7 2019

2)\(1+x\sqrt{x}\)

\(=1^3+\left(\sqrt{x}\right)^3\)

\(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)\)

Bài 1​: Với mọi số x, y. Chứng minh rằng: a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \) b) \(x^2+5y^2-4xy+2x-6y+3>0\) Bài 2: Với mọi số thực x, a. Chứng minh rằng: \(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\) Bài 3: Cho \(a, b, c, d \in R\) và \(b< c < d\). Chứng minh rằng: a) \((a+b+c+d)^2>8(ac+bc)\) b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\) Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\)....
Đọc tiếp

Bài 1​: Với mọi số x, y. Chứng minh rằng:

a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \)
b) \(x^2+5y^2-4xy+2x-6y+3>0\)

Bài 2: Với mọi số thực x, a. Chứng minh rằng:

\(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\)

Bài 3: Cho \(a, b, c, d \in R\)\(b< c < d\). Chứng minh rằng:

a) \((a+b+c+d)^2>8(ac+bc)\)
b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\)

Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\). CMR:

\((p^2-a^2-b^2)(q^2-c^2-d^2)\le(pq-ac-bd)^2\)

Bài 5: \((a_1b_1+a_2b_2)^2\le(a_1^2+a_2^2)(b_1^2+b_2^2)\) dấu bằng xảy ra khi nào?

Bài 6: Cho a>0. Chứng minh rằng:

\(\sqrt{a+\sqrt{a+....+\sqrt{a}}}<\dfrac{1+\sqrt{1+4a}}{2}\)

Bài 7: \(y=\dfrac{x+1}{x^2+x+1}\). Tìm cực trị của y.

Bài 8: Cho \(0\le x, \) \(y\le1 \)\(x+y=3xy\). CMR: \(\dfrac{3}{9}\le \dfrac{1}{4(x+y)}\le \dfrac{3}{8}\)

Bài 9: Cho \(0\le x, \)\(y\le1 \). CMR: \((2^x+2^y)(2^{-x}+2^{-y})\ge \dfrac{9}{2}\)

Bài 10: Ba số thực a, b, c thỏa: \(a^2+b^2+c^2=2\), \(ab+bc+ca=1\) CMR: \(a,b,c \in [\dfrac{3}{4},\dfrac{4}{3}]\)

1
4 tháng 6 2018

@Phùng Khánh Linh

@Aki Tsuki

@Nhã Doanh

@Akai Haruma

@Nguyễn Khang

11 tháng 10 2020

a= 98 b=35 c=122 và d=129

11 tháng 10 2020

a, \(5+\sqrt{5}=\sqrt{5}\left(\sqrt{5}+1\right)\)

b, \(a-2\sqrt{a}=\sqrt{a}\left(\sqrt{a}-2\right)\)

c, \(x-\sqrt{xy}=\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)\)

d, \(x-y-\sqrt{x}-\sqrt{y}\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)

\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}-1\right)\)