Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x+4\right)^2.\left(x^2-1\right)-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(\left(x+4\right)^2-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+4-1\right)\left(x+4+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+5\right)\)
Cho mình nhé hihi!!!
x2(x+4)2-(x+4)2-(x2-1)
=(x+4)2 (x2-1)-(x2-1)
=(x2-1)(x2+8x+16-1)
=(x-1)(x+1)(x2+8x+15)
a) Đặt: x = a- b; y = b - c ; z = c- a
Ta có: x + y + z = 0
=> \(A=x^3+y^3+z^3=3xyz+\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=3xyz\)
=> \(A=3xyz=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
b) Đặt: \(a=x^2-2x\)
Ta có: \(B=a\left(a-1\right)-6=a^2-a-6=\left(a+2\right)\left(a-3\right)=\left(x^2-2x+2\right)\left(x^2-2x-3\right)\)
\(=\left(x^2-2x+2\right)\left(x+1\right)\left(x-3\right)\)
d) \(D=4\left(x^2+2x-8\right)\left(x^2+7x-8\right)+25x^2\)
Đặt: \(x^2-8=t\)
Ta có: \(D=4\left(t+2x\right)\left(t+7x\right)+25x^2\)
\(=4t^2+36xt+81x^2=\left(2t+9x\right)^2\)
\(=\left(2x^2+9x-16\right)^2\)
bài 1: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
\(\dfrac{x}{x+2}-\dfrac{x}{x-2}\)
\(=\dfrac{x\left(x-2\right)-x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-2x-x^2-2x}{\left(x-2\right)\left(x+2\right)}=-\dfrac{4x}{x^2-4}\)
Bài 2:
1: \(x^2y^2-8-1\)
\(=x^2y^2-9\)
\(=\left(xy-3\right)\left(xy+3\right)\)
2: \(x^3y-2x^2y+xy-xy^3\)
\(=xy\cdot x^2-xy\cdot2x+xy\cdot1-xy\cdot y^2\)
\(=xy\left(x^2-2x+1-y^2\right)\)
\(=xy\left[\left(x-1\right)^2-y^2\right]\)
\(=xy\left(x-1-y\right)\left(x-1+y\right)\)
3: \(x^3-2x^2y+xy^2\)
\(=x\cdot x^2-x\cdot2xy+x\cdot y^2\)
\(=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\)
4: \(x^2+2x-y^2+1\)
\(=\left(x^2+2x+1\right)-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x+1+y\right)\left(x+1-y\right)\)
5: \(x^2+2x-4y^2+1\)
\(=\left(x^2+2x+1\right)-4y^2\)
\(=\left(x+1\right)^2-4y^2\)
\(=\left(x+1-2y\right)\left(x+1+2y\right)\)
6: \(x^2-6x-y^2+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
\(\dfrac{xy}{2}-x+\dfrac{x^2}{4}=x\left(\dfrac{y}{2}-1+\dfrac{x}{4}\right)\)
x^3 - 4x^2 + 4x + 4x - 8
= (X^3 - 8) - (4x^2 - 4x - 4x)
= (x - 2)(x^2 + 2x + 4) - 4x( x - 2)
= (x - 2)(x^2 + 2x + 4 - 4x)
= (x - 2)(x^2 - 2x + 4)
b) 4x^2 - 25 - (2x - 5)(2x- 7)
= (2x - 5)(2x + 5) - (2x - 5)(2x - 7)
= (2x - 5)(2x + 5 - 2x + 7)
= 12(2x - 5)
c) x^3 + 27 + (x + 3)(x - 9)
= (x+3)(x^2-3x+9) + (x + 3)(x - 9)
= (x + 3) (x ^2 -3x + 9 + x - 9)
= (x + 3)(x^2 - 2x) = x(x - 2)(x + 3)
Bạn nên tách bài ra để đăng. Không nên đăng 1 loạt như thế này.
1: \(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)
=(x^2+x)^2+3(x^2+x)-10
=(x^2+x+5)(x^2+x-2)
=(x^2+x+5)(x+2)(x-1)
2: \(=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4\)
\(=\left(x^2+5ax\right)^2+10a^2\left(x^2+5ax\right)+25a^2\)
\(=\left(x^2+5ax+5a^2\right)^2\)
3: \(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
5: \(M=\left(n+1\right)\left(n^2+2n\right)+360\)
=n(n+1)(n+2)+360 chia hết cho 6
6A
7D
1/ = x4 + 2x3 + 4x2 + 3x - 10 = (x4 - x3) + (3x3 - 3x2) + (7x2 - 7x) + (10x - 10)
= (x - 1)(x3 + 3x2 + 7x + 10) = (x - 1)[(x3 + 2x2) + (x2 + 2x) + (5x + 10)]
= (x - 1)(x + 2)(x2 + x + 5)
2/ = (x5 - 2x4) + (x4 - 2x3) + (x3 - 2x2) + (x2 - 2x) + (x - 2) = (x - 2)(x4 + x3 + x2 + x + 1)