K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2024

`a, x^3 - 5x^2 + 8x - 4`
`= x^3 - x^2 - 4x^2 + 4x + 4x - 4`
`= x^2(x-  1) - 4x(x - 1) + 4(x - 1)`
`= (x^2 - 4x + 4)(x - 1)`
`= (x-  2)^2(x - 1)`

 

a: \(x^4-6x^3+11x^2-6x+1\)

\(=x^4-3x^3+x^2-3x^3+9x^2-3x+x^2-3x+1\)

\(=x^2\left(x^2-3x+1\right)-3x\left(x^2-3x+1\right)+\left(x^2-3x+1\right)\)

\(=\left(x^2-3x+1\right)^2\)

b: \(x^4-5x^3+8x^2-4x\)

\(=x\left(x^3-5x^2+8x-4\right)\)

\(=x\left(x^3-x^2-4x^2+4x+4x-4\right)\)

\(=x\left[x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\right]\)

 

\(=x\left(x-1\right)\left(x^2-4x+4\right)=x\left(x-1\right)\left(x-2\right)^2\)

a: \(=6x^3-12x^2+x^2-2x+x-2\)

\(=\left(x-2\right)\left(6x^2+x+1\right)\)

b: \(=3x^4+3x^3-x^3-x^2-7x^2-7x+5x+5\)

\(=\left(x+1\right)\left(3x^3-x^2-7x+5\right)\)

\(=\left(x+1\right)\left(3x^3-3x^2+2x^2-2x-5x+5\right)\)

\(=\left(x+1\right)\left(x-1\right)\left(3x^2+2x-5\right)\)

\(=\left(x-1\right)^2\cdot\left(x+1\right)\left(3x+5\right)\)

c: \(=4x^3+x^2+4x^2+x+4x+1\)

\(=\left(4x+1\right)\left(x^2+x+1\right)\)

29 tháng 5 2019

Sorry nhé, mk mới lớp 6 thui.

Nên ko bit làm, mong đừng giận.

Nhưng xin tk nhé, đang thiếu sp trầm trọng.

Ai tk mk mk sẽ tk lại !

chị vào câu hỏi tương tự 

kham khảo nha 

chúc chị

thành công trong

học tập

2 tháng 8 2016

a, \(x^3+6x^2+11x+6\)

\(=x^3+3x^2+3x^2+9x+2x+6\)

\(=x^2\left(x+3\right)+3x\left(x+3\right)+2\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2+3x+2\right)\)

\(=\left(x+3\right)\left(x^2+x+2x+2\right)\)

\(=\left(x+3\right)\text{[}x\left(x+1\right)+2\left(x+1\right)\text{]}\)

\(=\left(x+3\right)\left(x+1\right)\left(x+2\right)\)

b, \(2x^3+3x^2+3x+2\)

\(=2x^3+2x^2+x^2+x+2x+2\)

\(=2x^2\left(x+1\right)+x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(2x^2+x+2\right)\)

c, \(x^3-4x^2-8x+8\)

\(=x^3+2x^2-6x^2-12x+4x+8\)

\(=x^2\left(x+2\right)-6x\left(x+2\right)+4\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-6x+4\right)\)

28 tháng 7 2020

câu này là câu b và c nhé nếu là câu a thì cái bt = cái khác 

Gỉa sử : ( bt = biểu thức :D )

\(bt=\left(x^2+ax+b\right)\left(x^2+cx+d\right)=x^4+\left(a+c\right)x^3+\left(d+ac+b\right)x^2+\left(bc+ad\right)x+bd\)

Ta có : \(\hept{\begin{cases}a+c=-6\\d+ac+b=14\\bc+ad=-7and:bd=1\end{cases}}\)(do không có ngoặc 4 

Đến đây thì giải ra như hpt thôi 

Dạng này được cái không cần sáng tạo già cả chỉ cần theo công thức nhưng khá khó trong việc giải hệ 

28 tháng 7 2020

a) Giả sử

\(4x^4+4x^3+5x^2+2x+1=4\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)

Khai triển vế trái = \(4x^4+4\left(a+c\right)x^3+4\left(b+d+ac\right)x^2+4\left(ad+bc\right)x+4bd\)

Rồi sử dụng đồng nhất thức, ta có hpt gồm các pt

\(4\left(a+c\right)=4\),\(4b+4d+4ac=5\),\(4ad+4bc=2\),\(4bd=1\)

Rồi ...

Các câu còn lại tương tự:))

16 tháng 6 2017

a)\(3x^2-8x+4\)

\(=3x^2-2x-6x+4\)

\(=x\left(3x-2\right)-2\left(3x-2\right)\)

\(=\left(x-2\right)\left(3x-2\right)\)

b)\(4x^4+81\)

\(=4x^4+36x^2+81-36x^2\)

\(=\left(2x^2+9\right)^2-36x^2\)

\(=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\)

c)\(x^8+98x^4+1\)

\(=\left(x^8+2x^4+1\right)+96x^4\)

\(=\left(x^4+1\right)^2+16x^2\left(x^4+1\right)+64x^4-16x^2\left(x^4+1\right)+32x^4\)

\(=\left(x^4+8x^2+1\right)^2-16x^2\left(x^4-2x^2+1\right)\)

\(=\left(x^4+8x^2+1\right)^2-16x^2\left(x^4-2x^2+1\right)\)

\(=\left(x^4+8x^2+1\right)^2-\left(4x^3-4x\right)^2\)

\(=\left(x^4+4x^3+8x^2-4x+1\right)\left(x^4-4x^3+8x^2+4x+1\right)\)

d)\(x^4+6x^3+7x^2-6x+1\)

\(=x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1\)

\(=x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\)

\(=\left(x^2+3x-1\right)\left(x^2+3x-1\right)\)\(=\left(x^2+3x-1\right)^2\)