\(x\sqrt{x}-3x+4\sqrt{x}-2\left(x>0\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

mình tưởng lopw 9 mới học căn

2 tháng 4 2018

em chịu bác lớp 7 học rui

14 tháng 2 2020

\(x\sqrt{x}-3x+4\sqrt{x}-2=x\sqrt{x}-x-2x+2\sqrt{x}+2\sqrt{x}-2\)

\(=x\left(\sqrt{x}-1\right)-2\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)\)

\(=\left(\sqrt{x}-1\right)\left(x-2\sqrt{x}+2\right)\)

AH
Akai Haruma
Giáo viên
28 tháng 9 2024

Lời giải:

$x\sqrt{x}-3x+4\sqrt{x}-2=(x\sqrt{x}-x)-(2x-2\sqrt{x})+(2\sqrt{x}-2)$

$=x(\sqrt{x}-1)+2\sqrt{x}(\sqrt{x}-1)+2(\sqrt{x}-1)$

$=(\sqrt{x}-1)(x+2\sqrt{x}+2)$

24 tháng 3 2017

a/ \(x^5+x+1=\left(x^5+x^4+x^3\right)+\left(-x^4-x^3-x^2\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

24 tháng 3 2017

c/ \(x\sqrt{x}-3x+4\sqrt{x}-2=\left(x\sqrt{x}-x\right)+\left(-2x+2\sqrt{x}\right)+\left(2\sqrt{x}-2\right)\)

\(=\left(\sqrt{x}-1\right)\left(x-2\sqrt{x}+2\right)\)

15 tháng 9 2017

a, \(=x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)

      \(=x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

       \(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

11 tháng 10 2020

Câu 1:

a) \(2x^2+5x-3=\left(2x^2+6x\right)-\left(x+3\right)\)

\(=2x\left(x+3\right)-\left(x+3\right)=\left(x+3\right)\left(2x-1\right)\)

b) \(x^4+2009x^2+2008x+2009\)

\(=\left(x^4-x\right)+\left(2009x^2+2009x+2009\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2009\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2009\right)\)

c) \(\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]=-16\) (đã sửa đề)

\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16=0\)

\(\Leftrightarrow\left(x^2+10x+20\right)^2-16+16=0\)

\(\Leftrightarrow\left(x^2+10x+20\right)^2=0\)

\(\Leftrightarrow\left(x+5\right)^2-5=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-5-\sqrt{5}\\x=-5+\sqrt{5}\end{cases}}\)

11 tháng 10 2020

Câu 1.

a) 2x2 + 5x - 3 = 2x2 + 6x - x - 3 = 2x( x + 3 ) - ( x + 3 ) = ( x + 3 )( 2x - 1 )

b) x4 + 2009x2 + 2008x + 2009 

= x4 + 2009x2 + 2009x - x + 2009 

= ( x4 - x ) + ( 2009x2 + 2009x + 2009 )

= x( x3 - 1 ) + 2009( x2 + x + 1 )

= x( x - 1 )( x2 + x + 1 ) + 2009( x2 + x + 1 )

= ( x2 + x + 1 )[ x( x - 1 ) + 2009 ]

= ( x2 + x + 1 )( x2 - x + 2009 )

c) ( x + 2 )( x + 4 )( x + 6 )( x + 8 ) = 16 ( xem lại đi chứ không phân tích được :v )

Câu 2. 

3x2 + x - 6 - √2 = 0

<=> ( 3x2 - 6 ) + ( x - √2 ) = 0

<=> 3( x2 - 2 ) + ( x - √2 ) = 0

<=> 3( x - √2 )( x + √2 ) + ( x - √2 ) = 0

<=> ( x - √2 )[ 3( x + √2 ) + 1 ] = 0

<=> \(\orbr{\begin{cases}x-\sqrt{2}=0\\3\left(x+\sqrt{2}\right)+1=0\end{cases}}\)

+) x - √2 = 0 => x = √2

+) 3( x + √2 ) + 1 = 0

<=> 3( x + √2 ) = -1

<=> x + √2 = -1/3

<=> x = -1/3 - √2

Vậy S = { √2 ; -1/3 - √2 }

Câu 3.

A = x( x + 1 )( x2 + x - 4 )

= ( x2 + x )( x2 + x - 4 )

Đặt t = x2 + x

A = t( t - 4 ) = t2 - 4t = ( t2 - 4t + 4 ) - 4 = ( t - 2 )2 - 4 ≥ -4 ∀ t

Dấu "=" xảy ra khi t = 2

=> x2 + x = 2

=> x2 + x - 2 = 0

=> x2 - x + 2x - 2 = 0

=> x( x - 1 ) + 2( x - 1 ) = 0

=> ( x - 1 )( x + 2 ) = 0

=> x = 1 hoặc x = -2

=> MinA = -4 <=> x = 1 hoặc x = -2

14 tháng 10 2020

Đến đây là PT tích r còn gì, \(x\in\left\{5;-10;-\sqrt{3}\right\}\)

14 tháng 10 2020

:v ez mà :) Sửa đề : tìm x 

\(\left(2x-10\right)\left(x+10\right)\left(x+\sqrt{3}\right)=0\)

TH1 : \(2x-10=0\Leftrightarrow x=5\)

TH2 : \(x+10=0\Leftrightarrow x=-10\)

TH3 : \(x+\sqrt{3}=0\Leftrightarrow x=-\sqrt{3}\)( vô lí )

Vậy x = 5 ; x = -10 

16 tháng 4 2016

-(-x^(3/2)+3*x-4*căn bậc hai(x-2))