Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta\) = 52 - 4(m - 2) = 25 - 4m + 8 = 33 - 4m
phương trình có 2 nghiệm phân biệt
\(\Leftrightarrow\) \(\Delta\) > 0 \(\Leftrightarrow\) 33 - 4m > 0 \(\Leftrightarrow\) - 4m > - 33 \(\Leftrightarrow\) m < \(\dfrac{33}{4}\)
phương trình có 2 nghiệm dương \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_1+x_2>0\\x_1.x_2>0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}5>0\\m-2>0\end{matrix}\right.\) \(\Leftrightarrow\) m > 2
ta có : \(2\left(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\right)\) = 3 \(\Leftrightarrow\) \(2\left(\dfrac{\sqrt{x_1}+\sqrt{x_2}}{\sqrt{x_1.x_2}}\right)\) = 3
\(\Leftrightarrow\) \(\dfrac{2\left(\sqrt{x_1}+\sqrt{x_2}\right)}{\sqrt{x_1.x_2}}\) = 3 \(\Leftrightarrow\) \(2\left(\sqrt{x_1}+\sqrt{x_2}\right)\) = \(3\sqrt{x_1.x_2}\)
\(\Leftrightarrow\) \(2\sqrt{x_1}\) + \(2\sqrt{x_2}\) = \(3\sqrt{x_1.x_2}\) \(\Leftrightarrow\) \(\left(2\sqrt{x_1}+2\sqrt{x_2}\right)^2\) = \(\left(3\sqrt{x_1.x_2}\right)^2\)
\(\Leftrightarrow\) 4x1 + 8\(\sqrt{x_1.x_2}\) + 4x2 = 9x1.x2 \(\Leftrightarrow\) 4(x1 + x2) + 8\(\sqrt{x_1.x_2}\) = 9x1.x2
áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1.x_2=m-2\end{matrix}\right.\)
thay vào ta có : 20 + 8\(\sqrt{m-2}\) = 9(m-2)
\(\Leftrightarrow\) 20 + 8\(\sqrt{m-2}\) = 9m - 18 \(\Leftrightarrow\) 9m - 38 = 8\(\sqrt{m-2}\)
\(\Leftrightarrow\) (9m - 38)2 = 64 (m - 2) (vì m - 2 > 0)
\(\Leftrightarrow\) 81m2 - 684m + 1444 = 64m - 128
\(\Leftrightarrow\) 81m2 - 748m + 1572 = 0
giải phương trình ta được m = 6 ; m = \(\dfrac{262}{81}\) (đều thỏa mảng điều kiện)
vậy m = 6 ; m = \(\dfrac{262}{81}\) là thỏa mãng điều kiện bài toán
\(xy-y\sqrt{x}+\sqrt{x}-1\)
\(=y\left(x-\sqrt{x}\right)+\left(\sqrt{x}-1\right)\)
\(=y\sqrt{x}\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)\)
\(\left(\sqrt{x}-1\right)\left(y\sqrt{x}+1\right)\)
a) Phương trình 2x2 – 5x + 3 = 0 có a + b + c = 2 – 5 + 3 = 0 nên có hai nghiệm là x1 = 1, x2 = \(\dfrac{3}{2}\) nên:
2x2 – 5x + 3 = 2(x – 1)(x2 - \(\dfrac{3}{2}\)) = (x – 1)(2x – 3)
b) Phương trình 3x2 + 8x + 2 có a = 3, b = 8, b’ = 4, c = 2.
Nên ∆’ = 42 – 3 . 2 = 10, có hai nghiệm là:
x1 = \(\dfrac{-4-\sqrt{10}}{3}\), x2 = \(\dfrac{-4+\sqrt{10}}{3}\)
nên: 3x2 + 8x + 2 = 3(x - \(\dfrac{-4-\sqrt{10}}{3}\))(x - \(\dfrac{-4+\sqrt{10}}{3}\))
= 3(x + \(\dfrac{4+\sqrt{10}}{3}\))(x + \(\dfrac{4-\sqrt{10}}{3}\))
=>(x-\(\sqrt{5}\))2
=>(x-\(\sqrt{5}\)) (x-\(\sqrt{5}\))
a, \(1-a\sqrt{a}\)
\(=\left[1-\left(\sqrt{a}\right)^3\right]\)
\(=\left(1-\sqrt{a}\right)\left[\left(\sqrt{a}\right)^2+1.\sqrt{a}+1^2\right]\)
\(=\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)\)
b, \(x-2\sqrt{x-1}\)
\(=\left(x-1\right)-2\sqrt{x-1}+1\)
\(=\left[\left(\sqrt{x-1}\right)-1\right]^2\)
\(M=7\sqrt{x-1}-\sqrt{x^2\left(x-1\right)}+\left(\sqrt{x-1}\right)^2=\sqrt{x-1}\left(7-x+\sqrt{x-1}\right)\)
\(=\sqrt{x-1}\left(6-\left(x-1\right)+\sqrt{x-1}\right)\)( đến đây bạn có thể đặt \(\sqrt{x-1}=t\),t>=0 rồi giải)
\(=-\sqrt{x-1}\left(\sqrt{x-1}-3\right)\left(\sqrt{x-1}+2\right)\)
Ta có : \(M=7\sqrt{x-1}-\sqrt{x^3-x^2}+x-1\)
\(=7\sqrt{x-1}-\sqrt{x^2\left(x-1\right)}+x-1\)
\(=7\sqrt{x-1}-x\sqrt{x-1}+\left(\sqrt{x-1}\right)^2\)
\(=\sqrt{x-1}\left(7-x+\sqrt{x-1}\right)\)
\(=\sqrt{x-1}\left(\sqrt{x-1}+2\right)\left(\sqrt{x-1}-3\right)\)
\(=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)
Làm như thế nào vậy ạ?