K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2015

\(x^8+x^7+1=x^8-x^2+x^7-x+\left(x^2+x+1\right)=x^2\left(x^6-1\right)+x\cdot\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+x\cdot\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+x^5-x^4+x^2-x+1\right)=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

14 tháng 9 2017

x7+x2+1

=x2(x5+1)+1

x8+x+1

=x(x7+1)+1

30 tháng 6 2019

\(=x^7\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^7-x+1\right).\)

30 tháng 6 2019

TL:

\(x^9+x^8+x^7-x^3+1\)1

\(=x^7\left(x^2+x+1\right)-\left(x^3-1\right)\) 

\(=x^7\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\) 

\(=\left(x^7-x+1\right)\left(x^2+x+1\right)\) 

hc tốt

26 tháng 9 2019

\(x^8+x^7+1\)

\(=\left(x^8-x^6+x^5-x^3+x^2\right)\)

\(+\left(x^7-x^5+x^4-x^2+x\right)\)

\(+\left(x^6-x^4+x^3-x+1\right)\)

\(=x^2\left(x^6-x^4+x^3-x+1\right)\)

\(+x\left(x^6-x^4+x^3-x+1\right)\)

\(+\left(x^6-x^4+x^3-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

b) x7 + x2 + 1 = (x7 – x) + (x2 + x + 1) 
= x.(x6 – 1) + (x2 + x +1) 
= x.(x3 - 1).(x3 +1) + (x2 + x +1) 
= x.(x-1).(x2 + x +1).(x3 +1) + (x2 + x +1) 
= (x2 + x +1).[x.(x-1).(x3 +1) + 1] 
= (x2 + x +1).[(x2-x).(x3 +1) + 1] 
= (x2 + x +1).(x5-x4 + x2 -x + 1

2 tháng 9 2017

\(h\left(x\right)=x^7+x^5+1=x^7+x^6+x^5-x^6+1=x^5\left(x^2+x+1\right)-\left(x^3+1\right)\left(x^3-1\right)\)

\(=x^5\left(x^2+x+1\right)-\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)

29 tháng 10 2018

\(x^8+x^7+1\)

\(=\left(x^8-x^6+x^5-x^3+x^2\right)+\left(x^7-x^5+x^4-x^2+x\right)+\left(x^6-x^4+x^3-x+1\right)\)

\(=x^2\left(x^6-x^4+x^3-x+1\right)+x\left(x^6-x^4+x^3-x+1\right)+\left(x^6-x^4+x^3-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

2 tháng 11 2018

\(x^5-x^4-1\)

\(=x^5-x^3-x^2-x^4+x^2+x+x^3-x-1\)

\(=x^2\left(x^3-x-1\right)-x\left(x^3-x-1\right)+\left(x^3-x-1\right)\)

\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)

19 tháng 11 2016

a, x8 + x7 + 1

=x2 (x6 - 1) + x (x6 - 1) +(x2 + x + 1)

= (x6 _ 1)(x2 + x) + (x2 + x +1)

= (x3 - 1)(x3 + 1)( x2 + x) + (x2 + x +1)

=(x - 1)(x2 + x +1)( x2 + x) + (x2 + x +1)

=(x2 + x +1)((x - 1)( x2 + x) +1)

=(x2 + x +1)(x3 + 1)

b, x5 - x4-1

c, x7+x5 + 1

d,x8 + x4 +1

Chú ý: Các đa thức có dạng: x3m+1+x3n+2+1 như x7+x2+1; x7+x5+1; x8 + x4 +1;

x5+x+1; x8+x+1 đều có nhân tử chung là x2 + x +1

Các phần còn lại tương tự nhé!!!

19 tháng 11 2016

cảm ơn ạ