Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )
b)
c) x^5 - x^4 - 1
= x^5 - x^3 - x² - x^4 + x² + x + x^3 - x - 1
= x²( x^3 - x - 1 ) - x( x^3 - x - 1 ) + ( x^3 - x - 1 )
= ( x² - x + 1)( x^3 - x - 1 )
d)
\(x^8+x^4+1=\left(x^8+2x^4+1\right)-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\)
câu b thì tương tự câu này
\(x^5+x+1=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
câu cuối cũng giống câu này
\(x^8+x^4+1\)
\(\text{Phân tích đa thức thành nhân tử :}\)
\(\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)
Lát làm tiếp
\(x^5+x+1=x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+1\)
\(=\left(x^5+x^4+x^3\right)+\left(x^2+x+1\right)-\left(x^4+x^3+x^2\right)\)
\(=x^3\left(x^2+x+1\right)+\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
\(x^{10}+x^5+1\)
\(=\left(x^{10}-x^9+x^7-x^6+x^5-x^3+x^2\right)\)
\(+\left(x^9-x^8+x^6-x^5+x^4-x^2+x\right)\)
\(+\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)
\(=x^2\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)
\(+x\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)
\(+\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)
Biết câu nào làm câu đấy thoy nha :))
3. \(x^4y^4+4\)
\(=\left(x^2y^2\right)^2+2\cdot x^2y^2\cdot2+2^2-2\cdot x^2y^2\cdot2\)
\(=\left(x^2y^2+2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2y^2-2xy+2\right)\left(x^2y^2+2xy+2\right)\)
4. \(x^4+4y^4\)
\(=\left(x^2\right)^2+2\cdot x^2\cdot2y^2+\left(2y^2\right)^2-2\cdot x^2\cdot2y^2\)
\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
2. \(x^4+x^2+1\)
\(=\left(x^2\right)^2+2\cdot x^2\cdot1+1^2-2x^2\)
\(=\left(x^2+1\right)^2-\left(\sqrt{2}x\right)^2\)
\(=\left(x^2-\sqrt{2}x+1\right)\left(x^2+\sqrt{2}x+1\right)\)
a, =x4(x+2)-x3(x+2)+x2(x+2)-x(x+2)+(x+2)
=(x+2)(x4-x3+x2-x+1)
\(x^7+x^2+1\)
=\(x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x^2+x-x+1\)
\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^5-x^4+x^2-x+1\right)\left(x^2+x+1\right)\)
Xong rồi đó
a) \(x^5+x^4+1\)
\(=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)
b) \(x^5+x+1\)
\(=x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^3-x^2+1\right)\left(x^2+x+1\right)\)
c) \(x^8+x^7+1\)
\(=x^8+x^7+x^6-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=x^6\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
d) \(x^5-x^4-1\)
\(=x^5-x^4+x^3-x^3+x^2-x-x^2+x-1\)
\(=x^3\left(x^2-x+1\right)-x\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^3-x-1\right)\left(x^2-x+1\right)\)