Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4-2y^4-x^2y^2+x^2+y^2=\left(x^4-y^4\right)-\left(x^2y^2-x^2\right)+\left(y^2-y^4\right)=\left(x^2-y^2\right)\left(x^2+y^2\right)-x^2\left(y^2-1\right)-y^2\left(y^2-1\right)=\left(x^2+y^2\right)\left(x^2-y^2\right)-\left(y^2-1\right)\left(x^2+y^2\right)=\left(x^2+y^2\right)\left(x^2-y^2-y^2+1\right)=\left(x^2+y^2\right)\left(x^2-2y^2+1\right)\)
\(4\left(1+x\right)\left(1+y\right)\left(1+x+y\right)-3x^2y^2=4\left(1+x+y+xy\right)\left(1+x+y\right)-3x^2y^2\)
\(=4\left(1+x+y\right)^2+4xy\left(1+x+y\right)+x^2y^2-4x^2y^2\)
\(=\left[2\left(1+x+y\right)+xy\right]^2-\left(2xy\right)^2=\left(2+2x+2y+xy-2xy\right)\left(2+2x+2y+xy+2xy\right)\)
\(=\left(2+2x+2y-xy\right)\left(2+2x+2y+3xy\right)\)
giúp mình câu khác được ko? câu này mình biết làm òi
\(x\sqrt{y}-y\sqrt{x}=\sqrt{x^2}.\sqrt{y}-\sqrt{y^2}.\sqrt{x}=\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(x\sqrt{y}-y\sqrt{x}\right)+\left(x-y\right)\)
\(=\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{xy}+\sqrt{x}+\sqrt{y}\right)\)
\(x^4+y^4\)
\(=x^4+2x^2y^2+y^4-2x^2y^2\)
\(=\left(x^2+y^2\right)^2-\left(\sqrt{2}xy\right)^2\)
\(=\left(x^2+\sqrt{2}xy+y^2\right)\left(x^2-\sqrt{2}xy+y^2\right)\)