Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
x³ + y³ + z³ - 3xyz = (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz).
= (x + y)3 + z3 – 3x2y – 3xy2 - 3xyz
= (x + y +z)[(x + y)2 – (x + y)z + z2)] - 3xy(x + y + z)
= (x + y + z)(x2 +2xy + y2 – xz – yz +z2 – 3xy)
= (x + y + z)(x2 + y2 +z2 – xy - yz – xz)
\(a,\left(3x+y\right)\left(9x^2-3xy+y^2\right)=27x^3+y^3\)
\(b,\left(2x-5\right)\left(4x^2+10x+25\right)=8x^3-125\)
a/ Áp dụng BĐT Bunhiacopxki :
\(5^2=\left(1.x+2.y\right)^2\le\left(1^2+2^2\right)\left(x^2+y^2\right)\Leftrightarrow5A\ge25\Leftrightarrow A\ge5\)
Đẳng thức xảy ra khi \(\begin{cases}x=\frac{y}{2}\\x+2y=5\end{cases}\) \(\Leftrightarrow\begin{cases}x=1\\y=2\end{cases}\)
Vậy MaxA = 5 <=> (x;y) = (1;2)
b/ Áp dụng BĐT Cauchy : \(5=x+2y\ge2\sqrt{2xy}\Rightarrow xy\le\frac{25}{8}\)
Đẳng thức xảy ra khi \(\begin{cases}x=2y\\x+2y=5\end{cases}\) \(\Leftrightarrow\begin{cases}x=\frac{5}{2}\\y=\frac{5}{4}\end{cases}\)
Vậy MaxA = 25/8 <=> (x;y) = (5/2;5/4)
2(x4+y4+z4)-(x2+y2+z2)2-2(x2+y2+z2)(x+y+z)2+(x+y+z)4
=2(x4+y4+z4)-(x2+y2+z2)2+(x+y+z)2[-2(x2+y2+z2)+(x+y+z)2]
tới đây r` sao đặt ẩn phân tích tiếp chắc =="
Bài 1 :
\(=\left(x^3-x\right)-\left(6x+6\right)\)
\(=x\left(x^2-1\right)-6\left(x+1\right)\)
\(=x\left(x+1\right)\left(x-1\right)-6\left(x+1\right)\)
\(=\left(x^2-x\right)\left(x+1\right)-6\left(x+1\right)\)
\(=\left(x^2-x-6\right)\left(x+1\right)\)
Bài 1 . ( 20x4y - 25x2y2 - 3x2 y) : 5x2y
= 5x2y.( 4x2 - 5y - \(\dfrac{3}{5}\)) : 5x2y
= 4x2 - 5y - \(\dfrac{3}{5}\)
Bài 2 . a) ( -2x5 + 3x2 - 4x3) : 2x2
= 2x2.( -x3 + \(\dfrac{3}{2}\) - 2x ) : 2x2
= - x3 - 2x + \(\dfrac{3}{2}\)
b) ( x3 - 2x2y + 3xy2) : ( \(\dfrac{1}{2}x\))
= \(\dfrac{1}{2}x\).( 2x2 - 4xy + 6y2) : ( \(\dfrac{1}{2}x\))
= 2x2 - 4xy + 6y2
c) ( 3x2y2 + 6x2y3 - 12xy ) : 3xy
= 3xy.( xy + 2xy2 - 4 ) : 3xy
= xy + 2xy2 - 4
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x-y\right)+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x-y-z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz-3xz-3yz-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
thui mik hieu roi cam on mn