Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2x-35\)
\(=x^2-2x+1-36\)
\(=\left(x-1\right)^2-36\)
\(=\left(x-1\right)^2-6^2\)
\(=\left(x-1-6\right)\left(x-1+6\right)\)
\(=\left(x-7\right)\left(x+5\right)\)
Ủng hộ mik nha
Thanks @@@@@@
\(2x-3x^2+x\)
\(=x\left(2-3x+1\right)\)
\(=x\left(-3x+3\right)\)
\(=-3x\left(x-1\right)\)
2x - 3x2 + x
=x.(2-3x+1)
=x.(3-3x)
=x.(3.(1-x))
=3x.(1-x)
a) ( 3x - 1 )2 - 4
= ( 3x - 1 ) - 22
= ( 3x - 1 - 2 )( 3x - 1 + 2 )
= ( 3x - 3 )( 3x + 1 )
= 3( x - 1 )( 3x + 1 )
b) ( x + y )2 - x2
= ( x + y - x )( x + y + x )
= y( 2x + y )
c) 100 - ( 2x - y )2
= 102 - ( 2x - y )2
= [ 10 - ( 2x - y ) ][ 10 + ( 2x - y ) ]
= ( 10 - 2x + y )( 10 + 2x - y )
d) ( 2x - 1 )2 - ( x - 1 )2
= [ ( 2x - 1 ) - ( x - 1 ) ][ ( 2x - 1 ) + ( x - 1 ) ]
= ( 2x - 1 - x + 1 )( 2x - 1 + x - 1 )
= x( 3x - 2 )
e) 4( x + 6 )2 - 9( 1 + x )2
= 22( x + 6 )2 - 32( 1 + x )2
= ( 2x + 12 )2 - ( 3 + 3x )2
= [ ( 2x + 12 ) - ( 3 + 3x ) ][ ( 2x + 12 + ( 3 + 3x ) ]
= ( 2x + 12 - 3 - 3x )( 2x + 12 + 3 + 3x )
= ( 9 - x )( 5x + 15 )
= 5( 9 - x )( x + 3 )
Ta có
1,\(3x^2+2x-1=3x^2+3x-x-1=3x\left(x+1\right)-\left(x+1\right)\)
\(\left(x+1\right)\left(3x-1\right)\)
2, \(x^3+2x^2+4x^2+8x+3x+6\)
\(=x^2\left(x+2\right)+4x\left(x+2\right)+3\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+4x+3\right)\)
\(=\left(x+2\right)\left(x^2+x+3x+3\right)\)
\(=\left(x+2\right)\text{[}x\left(x+1\right)+3\left(x+1\right)\text{]}\)
\(=\left(x+2\right)\left(x+1\right)\left(x+3\right)\)
3,\(x^4+2x^2-3=x^4-x^2+3x^2-3\)
\(=x^2\left(x^2-1\right)+3\left(x^2-1\right)\)
\(\left(x^2-1\right)\left(x^2+3\right)=\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)
4,\(ab+ac+b^2+2bc+c^2\)
\(=a\left(b+c\right)+\left(b+c\right)^2\)
\(=\left(b+c\right)\left(a+b+c\right)\)
Ta có M = x3 + x2y - 2x2 - xy - y2 +3y + x + 2017
= x2(x + y - 2) - y(x + y - 2) + x + y - 2 + 2019
thay x + y - 2 = 0 vào M ta có : M = x2.0 - y.0 + 0 + 2019
= 2019
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)
\(=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(y+x-2\right)+2019\)
\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)
\(=\left(x+y-2\right)\left(x^2-y+1\right)+2019\)
Thay \(x+y-2=0\)vào đa thức ta được:
\(M=0.\left(x^2-y+1\right)+2019=2019\)
a) 4x3y - 12x2y3 - 8x4y3 = 4x2y( x - 3y2 - 2x2y2 )
b) 2x2 + 4x + 2 - 2y2 = 2( x2 + 2x + 1 - y2 ) = 2[ ( x2 + 2x + 1 ) - y2 ] = 2[ ( x + 1 )2 - y2 ] = 2( x - y + 1 )( x + y + 1 )
c) x3 - 2x2 + x - xy2 = x( x2 - 2x + 1 - y2 ) = x[ ( x2 - 2x + 1 ) - y2 ] = x[ ( x - 1 )2 - y2 ] = x( x - y - 1 )( x + y - 1 )
d) x( x - 2y ) + 3( 2y - x ) = x( x - 2y ) - 3( x - 2y ) = ( x - 2y )( x - 3 )
e) x4 + 4 = ( x4 + 4x2 + 4 ) - 4x2 = ( x2 + 2 )2 - ( 2x )2 = ( x2 - 2x + 2 )( x2 + 2x + 2 )
f) 5x2 - 7x - 6 = 5x2 - 10x + 3x - 6 = 5x( x - 2 ) + 3( x - 2 ) = ( x - 2 )( 5x + 3 )
\(x^3+2x^2-2x-12=x^3-2x^2+4x^2-8x+6x-12\)
\(=x^2\left(x-2\right)+4x\left(x-2\right)+6\left(x-2\right)=\left(x-2\right)\left(x^2+4x+6\right)\)
\(x^3+2x^2-2x-12\)
\(=x^3-2x^2+4x^2-8x+6x-12\)
\(=x^2\left(x-2\right)+4x\left(x-2\right)+6\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+4x+6\right)\)
hk tốt
^^